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ABSTRACT 

A broad look a t  t he  problems of convolutional encoding 
and sequential  decoding of d i g i t a l  data f o r  r e l i a b l e  t rans-  
mission over a noisy channel i s  presented. Various dis- 
tance measures f o r  convolutional encoders a r e  careful ly  de- 
fined. A distance measure ca l led  the f r e e  distance,  and 
introduced by Massey [9) , M c E l i e c e  and Rumsey [lo] , and 
Neumann [ll] , i s  shown t o  be a more important parameter 
f o r  codes used with sequential decoding than the conven- 
t i o n a l  m i n i m u m  distance. 

The  notion of equivalent encoders i s  careful ly  con- 
sidered, and a new de f in i t i on  of encoder equivalence which 
preserves the distance propert ies  of t h e  encoder i s  given. 
For those non-systematic encoders t h a t  do not have a system- 
a t i c  equivalent which preserves distance propert ies ,  a 
method i s  presented f o r  converting the  encoder t o  a better 
systematic encoder. Also, general parity-check matrices 
and syndrome forming c i r c u i t s  f o r  non-systematic encoders of 
a l l  r a t e s  a r e  presented. 

A new lower bound on f r e e  distance i s  given, and 
McEliece and Rumsey's [lo] upper bound i s  generalized. 
a new lower bound on d e f i n i t e  decoding minimum distance,  f o r  
both systematic and non-systematic codes, i s  derived, a s  
w e l l  a s  G i l b e r t  lower bounds on feedback decoding minimum 
distance f o r  two simply implemented subclasses of convolu- 
t i o n a l  codes. Final ly ,  some new methods f o r  calculat ing t h e  
f r e e  distance a r e  discussed. 

A l s o ,  

Construction algorithms a r e  given which produce longer 
good codes than any previously known. A sequential de- 
coding system was simulated f o r  both t h e  Gaussian and binary 
symmetric channels. Various codes w e r e  tested over d i f f e r -  
e n t  channels f o r  their  performance a s  regards decoding prob- 
a b i l i t y  of e r r o r  and decoding speed (number of computations). 
A simply implemented non-systematic r a t e  1/2 code was found 
t o  be f a r  superior t o  a l l  other  codes tested w i t h  the same 
constraint  length. 

F ina l ly ,  a technique introduced by McEliece [lo] f o r  
constructing good convolutional codes from known block codes 
was extended, and some convolutional codes discovered by 
Wyner [34] and Sullivan [ 351 w e r e  discussed. 
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I. Introduction 

A. Background 

Convolutional codes w e r e  f i r s t  introduced by E l i a s  i n  

1955 [l) . 
probabi l i ty  of decoding e r ro r  i s  achievable w i t h  convolu- 

t i o n a l  codes than with block codes of the  same r a t e  and com- 

parable complexity used over a memoryless channel. Another 

advantage of convolutional codes over block codes i s  the  ex- 

i s tence  f o r  t h e  former of a general, simply instrumented, 

and near-optimal decoding algorithm, cal led sequential  de- 

Recently, Viterbi  [2)  has shown t h a t  a lower 

codinq, whose evolution began w i t h  Wozencraft i n  1957 [ 3 )  . 
Sequential decoding i s  probabal i s t ic  i n  nature, and the  same 

basic  sequential decoding algorithm i s  applicable t o  a very 

general c l a s s  of codes, ca l led  tree codes, of which convo- 

lu t iona l  codes a r e  a subclass. A t  t he  present t i m e ,  sequen- 

t i a l  decoding of convolutional codes represents the best 

p rac t i ca l  means of employing long codes on the  addi t ive 

white Gaussian noise channel and on many other memoryless 

channels. Algebraic decoding techniques f o r  convolutional 

codes, such a s  Massey's threshold decoding [4) , a lso  pro- 

vide good coding systems f o r  ce r t a in  channels with memory, 

and f o r  short  codes on memoryless channels. 

B. Review of Convolutional Encoding 

It i s  convenient t o  define a convolutional code a f t e r  

f i r s t  making precise  what i s  meant by a convolutional en- 

coder. A more general type of encoder i s  defined f i r s t .  

1 
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Defini t ion 1.1 An (N,K) seneral  convolutional encoder G 

i s  an inve r t ib l e  K-input, N-output rea l izable  l i n e a r  f i n i t e -  

s t a t e  machine (FSM) w h i c h  i s  i n  the zero s ta te  i n  the inf in-  

i t e  pas t . (  

Figure 1.1 shows an (N,K)  general  convolutional en- 

coder. A t  each u n i t  of t i m e  the encoder transforms the 

block of K input  d i g i t s  i n t o  a block of N output d ig i t s .  

Realizable means t h a t  the encoder output cannot depend upon 

fu ture  inputs. 

be recovered, perhaps w i t h  delay, from the  encoder output 

and i s  the elementary condition f o r  an encoder t o  be useful.  

I n v e r t i b i l i t v  [5] means that  the input can 

Without an inverse,  decoding could be ambiguous, even i n  

the absence of noise. I f  G i s  time-invariant, it i s  ca l led  

a f ixed  convolutional encoder, o r  simply a convolutional 

encoder. When the encoder G i s  time-invariant, def in i t ion  

1.1 reduces t o  Forney’s [6] def in i t ion  of a convolutional 

encoder. 

Consider a semi-inf i n i t e  (or one-sided) sequence 

of d i g i t s  over a f i n i t e  f i e l d  G F ( q ) ,  where 
a n ’ an+l’ . ro  
- (=o < n < + 00. The transform A(D) of this sequence is  de- 

f ined t o  be the formal power  series 

n Dn+l + 0 . .  . 
+ an+l A(D) = anD 

If ai = 0 f o r  a l l  i < 0, then the sequence i s  ca l led  causal, 

and i f  the sequence has  only a f i n i t e  number of non-zero 

d i g i t s ,  it i s  ca l led  f i n i t e ,  A polynomial i n  the indeter-  

minate D over a f i n i t e  f i e l d  GF(q) i s  thus seen t o  be iden- 

t i f i e d  a s  the  transform of a causal, f i n i t e  sequence. The  

deqree of a polynomial i s  the highest  power of D i n  the 
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Fig. 1.1. An (N, K) general convolutional encoder. 
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polynomial, and the delav of a polynomial i s  the highest 

power of D w h i c h  it contains a s  a factor, By convention, 

the polynomial 0 has  degree -wand delay +m. 
p (D) 

A r a t iona l  function i s  a r a t io  of t w o  polynomials - , 
8 (Dl 

where Q(D) # 0 and the divis ion i s  assumed t o  begin w i t h  the 

lowest degree terms of each polynomial. A sequence i s  ca l led  

r a t iona l  if i ts  transform i s  a r a t iona l  function. The ra -  

m i s  causal i f  and only if 
Q (DI t i ona l  sequence w i t h  transform 

n ’  5 n, where n’  i s  the delay of Q ( D j  and n i s  the delay of 

P(D) Causal r a t iona l  sequences a r e  called r ea l i zab le  s ince 

they can be produced by an autonomous l i n e a r  f i n i t e  s t a t e  

machine, A r ea l i zab le  function i s  the transform of a causal 

r a t iona l  sequence. 

The K input  sequences t o  any encoder w i l l  be restricted 

t o  be ra t iona l  sequences, The set of K input sequences w i l l  

be represented by the semi-infinite r o w  vector y = 

%+2‘ n 

[% %+l’ 
(K) (1) (K? ( 1) 

0 . .  xn xn+l xn+l xn+2 * - *  

...I = [ x (1) 

(KF .. . ] , w h e r e  n i s  the l e a s t  in teger  such t h a t  zn # 0, n+2 X 

(K) ] i s  the row vector o r  K-tuple of input  (11 xi =[x i ... xi 

d ig i t s  a t  t i m e  u n i t  i, and xi (j’ i s  the input d i g i t  a t  t i m e  

u n i t  i i n  the jth input sequence, n I i < 00 , i 5 j 5 K. - x i s  

ca l l ed  the information sequence s ince it represents the data 

t o  be encoded. The transform of the information sequence 

w i l l  be wr i t ten  a s  the K-tuple z ( D )  = [x(” (D) , x ( ~ ’  (D) ..., 
L 

( j )  n ( j l  Dn+l ( j )  
+ xn+l + %+2 x(K’ (D) ] , where x(j’  (D) = xn 

Dn+2 + . . . , 1 5 j I ,K,  i s  the transform of the jth input  

sequence, 
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Since a l l  encoders are r ea l i zab le  and the input  se- 

quences a r e  r a t iona l ,  the N output sequences of any encoder 

a r e  a l so  r a t iona l  and may be represented by the semi-infin- 

i t e  r o w  vector y = 

Yn+1 - 0 .  Yn+l Yn+2 0 . 0  yn+2 

...] =[Yn (1) 0 .  oy, (NF 

(1) (N) (1) (N’. . . ] , w h e r e  yi =[Yi (1) 

.-. yi (N’ ] i s  the row vector o r  N-tuple of output d i g i t s  a t  

t i m e  u n i t  i, and yi i s  the output d i g i t  at t i m e  u n i t  i i n  

the j output sequence, n I i < , L I j I N. y i s  ca l l ed  t h  

the t ransmit ted sequence o r  codeword s ince it represents  the 

data w h i c h  i s  ac tua l ly  t o  be transmitted over the channel. 

The transform of the transmitted sequence w i l l  be wr i t t en  a s  

the N-tuple y ( D )  =[y(’) (D), y(2’ (D) ,.. . , y(N’ (D) ] , where 

N ,  i s  the transform ‘of the jth output sequence. 

The encodinq equations f o r  a general convolutional en- 

coder over the set of a l l  r a t iona l  input  sequences can be 

wr i t ten  a s  

‘i = 7 G.. (i-Q zia , 
GO 

where G+(u) i s  a KxN matrix of elements from G F ( q j ,  0 < /e < m ,  

n I u ( 0 0 ,  and a l l  operations a r e  performed over G F ( q ) .  

I n  the remainder of t h i s  thesis only causal r a t iona l  

sequences w i l l  be allowed a s  inputs ,  except when it i s  ex- 

p l i c i t l y  s t a t ed  t h a t  a l l  r a t iona l  sequences a r e  t o  be con- 

s idered a s  inputs. I n  th i s  case n 2 0 and the information 

and transmitted sequences w i l l  be assumed t o  begin a t  t i m e  
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(N) . . . ] Hence t h e  encoding equations f o r  (wl (1) y1 Y2 -Y2 

a general convolutional encoder over the set of a l l  causal 

r a t iona l  input sequences can be wri t ten a s  

w h e r e  

- G =  
G (2) g1(2) G2(21 
-0. 

1 0  - 0 
i s  ca l led  the senerator  matrix and 

Defini t ion 1.1 requires  t h a t  each sequence g 

9 2 i  
These sequences a r e  ca l led  senerator  sequences. 

(3 (u) f O i  

( u ) ~ . . ~ ~  1 I i i K, 1 I j I N, 0 I u < m  be real izable .  (j) 

The  generator matrix for  a f ixed convolutional encoder 

i s  wri t ten a s  

1 
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where 

1 5  i 5 K ,  1 5  j I N ,  i s  real izable .  It i s  of ten convenient 

t o  represent a f ixed convolutional encoder by a K x N matrix 

and 

... (8) D + g2& (3 D2 + 
( j )  

+ g l i  (D) = goi Gi 

i s  the transform of the generator sequence gol ( j )  , gli ( j )  , 

a aenerator function. Then the  encoding equations can be 

wr i t ten  i n  D-operator form a s  

y ( D )  = x ( D )  G(D) , 

where a l l  operations a r e  performed over G F ( q 1 .  
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The following def in i t ions  a r e  due t o  Forney [6] and 

apply t o  both time-varying and f ixed  convolutional codes. 

Definit ion 1 . 2  The convolutional code C generated by a 

convolutional encoder G i s  the  set of a l l  output sequences 

y of G produced by t h e  set of a l l  r a t iona l  input sequences 

- x t o  G.1 

Definit ion 1.3 Two encoders a r e  sa id  t o  be equivalent i f  

they generate t h e  same convolutional code. 1 
The r a t e  R of a general convolutional encoder i s  de- 

The  time-u memory order m(u) of a general f i ned  t o  be : n 

convolutional encoder i s  defined a s  

max p 1 Ei(U) # o l  (10) 
m(u) = O l i < 0 0  

00 i f  no such i exis t s .  

The memory order m of t h e  encoder i s  then defined a s  

max { m(u) 1 i f  m(u) i s  f i n i t e  f o r  a l l  u 
O(U (00 (111 

For f ixed  convolutional encoders, the  memory order m of 

the  encoder i s  defined a s  

max { i  1 G i Z O l  
O C i  (00  

m =  

00 i f  no such i exis t s .  

All encoders with m = 0 a r e  block encoders. Therefore con- 

volutional codes inc lude  block codes a s  a special  case. 
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be the l e a s t  value of u such t h a t  m(u] i s  a Let Urnax 
maximum i f  m(u) i s  f i n i t e  f o r  a l l  u 2 0. 

be the l e a s t  value of u such t h a t  m(u) i s  i n f i n i t e .  Then the  

number of encoded d i g i t s  i n  those encoded blocks inclusive 

between the  f i r s t  and l a s t  encoded block which depend on the 

time-u 

constraint  lencrth n For both general and f ixed convolu- A' 
t i o n a l  encoders of memory order m, 

Otherwise l e t  umax 

block of input d i g i t s  i s  defined t o  be the gncodinq max 

For time-varying encoders of memory order m,  the  gener- 

ator matrix can be r e w r i t t e n  as 

L 0 
0 

and f o r  f ixed encoders of memory order m J  t he  generator matrix 

becomes 

I f  
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where IK i s  the K x K i d e n t i t y  matrix and %(u)r i s  a K x 

(N - K) matrix of elements from GF(q), and 

where 0 i s  the  K x K a l l -zero matrix and Q. (u) i s  a K x 

(N - K) matrix of elements from G F ( q ) ,  then t h e  encoder i s  
K -1 

said t o  be i n  canonic systematic form, An encoder i s  sa id  

t o  be i n  systerhatic form i f  t he  output terminals can be re- 

numbered so t h a t  t h e  r e su l t an t  encoder i s  i n  canonic system- 

a t i c  form. For systematic encoders some set of K output 

sequences a r e  reproductions of t he  K input sequences, and 

f o r  canonic systematic encoders, the  transmitted sequence y 

can be wri t ten a s  

(K+1) ' ' 'P, (N )'.'I , 

where i s  an (N - K)-dimensional 

p a r i t v  vector,  and pi (j' i s  ca l led  

row vector ca l led  a 

a Par i tv  d i s i t ,  0 5 i <m , 

K + 1 5  j 5 N. 

A f ixed code i s  i n  canonic systematic form i f  

% '[IK : "03 
-i G =[OK : -1 Q.] , 1 I i < a  

- G(D) =[IK : - Q(D)] , (22) 

( 20) 

and 

(21) 

This i s  equivalent t o  requiring t h a t  

where 
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2 
&(D) = + &ID + Q2D + ... . (23) 

I n  t h i s  case the  transform y ( D )  of t he  transmitted sequence 

can be wri t ten a s  

(24) 

where 

i s  the  transform of the j th p a r i t y  seguence po ( j )  p1 ( j )  I 

For a time-varying convolutional encoder, i f  

G . ( u )  = G . ( U  + T ) ,  o 5 i (00, 0 2 uCm , (26) -1 -1 

the  encoder i s  ca l l ed  per iodic  with period T. Clearly a 

fixed encoder i s  a per iodic  encoder w i t h  period T = 1. 
1 

The most fami l ia r  convolutional encoders a r e  the R = - N 
fixed encoders. I n  t h i s  case the  f i r s t  row of the  generator 

matrix G i s  ca l led  t h e  aenerator,  and i s  labeled g. F i g u r e  

1 . 2  shows an example of what Forney c a l l s  t h e  obvious rea l iza-  

- t i on  [ 63 of a binary R = 1/2  canonic systematic f ixed con- 

volutional encoder w i t h  G(D) = [ 1 

the encoder i s  rea l ized  with two memory elements even though 

+ 1 + D  + D2]. Note t h a t  

t he  memory order of the encoder i s  i n f i n i t e .  When G(D) con-. 

t a i n s  only polynomial elements the number of memory elements 

required i n  t he  obvious r ea l i za t ion  i s  equal t o  the  memory 

order of the encoder. However, a r a t iona l  function 

requires  only max 

elements i n  i t s  rea l iza t ion .  The feedback used t o  r e a l i z e  a 

rn 
Q (D) 

degree [ P ( D ) ]  , degree [ Q ( D ) ]  1 memory I 
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r a t iona l  function accounts f o r  the i n f i n i t e  memory order of 

t he  encoder. 

It  i s  usually desirable  t o  eliminate feedback i n  the 

encoder so t h a t  an encoding error caused by an equipment mal- 

function w i l l  not propagate (cause other  errors)  throughout 

t h e  transmitted sequence. Feedback can be eliminated by 

multiplying each row of G(D) by t h e  l e a s t  common multiple of 

the denominators of i t s  generator functions resu l t ing  i n  a 

matrix G'(D) w i t h  only polynomial elements. The resu l t ing  

encoder i s  equivalent t o  the o r ig ina l  encoder. For example, 

the  encoder given above has (D) = 1 1 + D 1 f D + D2 1 . 
L J 

An input x ( D )  = [ x ( l )  (D)] = x(D) t o  G(D) produces t h e  same 

codeword a s  an input  1- t o  (D) . The obvious rea l iza-  x (D) 

t i o n  of GI (D) i s  shown i n  Figure 1.3. Note t h a t  t h e  poly- 

nomial encoder has memory order two but i s  not canonic system- 

a t i c .  

C. Review of Algebraic Decoding 

L e t  

0 - 0 
c 1 

be a semi-infinite matrix and 
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= one time unit delay @ = modulo-2 adder 

Fig. 1.2. Obvious realization of a rational function encoder. 

Fig. 1.3. Obvdous realization of a polynomial encoder. 
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be an (N - K) x N matrix of elements from G F ( q )  , 0 I u, & 

<m, such that 

T where E is the transpose of €3, Q is a semi-infinite all- 

zero matrix, and each sequence h (j) (u) , hli (j) (u) , h2i (j) (u) / Oi 
1 I i I N - K, 1 I j I N, 0 I u ( 0 0 ,  is realizable. 

These sequences are called parity-check sequences and is 

called a parity-check matrix. 

The parity-check matrix for fixed convolutional encoders 

is written as 

- H =  

0 - D % -  
€31 -0 H - 0 
H H  H -2 -1 -0 

where 
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E(?)). = 

( j )  ( j F  ( j )  and each parity-check sequence hoi , hli , h2i ,..., 
1 I i I N - K ,  1 2  j S N, i s  real izable .  It is  of ten  con- 

- 
(D) H1 (2) (D) ... H1 (N) (D) 

H2 (D) H2 (2)  (D) ... H2 (N)  (D) 
H1 

. 

venient t o  introduce an (N - K)x N matrix H ( D ) ,  where 

and 

(34)  

(jF ( 3  i s  the transform of the parity-check sequence hoi 

h2i 

, hli , 
( j )  (D) i s  Each Hi ( j )  

,...# 1 < i < N - K ,  1 5  j I N. 

ca l led  a paritv-check function. Then equations ( 3 0 1 ,  the 

can be wri t ten i n  D-operator form a s  

T - G(D)  E (D) = Q , 
where 0 i s  the K x (N-K) a l l -zero matrix. 

For any t ransmit ted sequence y 
T yaT = x - p g  =x.x=Q, (37)  

where 0 i s  a semi-infinite a l l -zera  vector. For f ixed en- 

coders equation (37)  can be wri t ten i n  D-operator form a s  
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where i n  t h i s  case Q i s  the  (N - K)-dimensional a l l -zero 

vector. Therefore every transmitted sequence i s  i n  the  n u l l  

space of E . 
no zero-delay inverse [5] , and the  n u l l  space of E [ I  T 

T However if rank -% < N - K,  t he  encoder has 

contains 

other sequences besides the  set of codewords. 

Note t h a t  

(39) 

Bo El -2 H E3 -4 H H  -5 * - -  

0 E() El 

0 .o iio0 rr, -2 H -3 H ... 
N - K  

encoder. T h i s  encoder 

- 
- 

E' = 

i s  a generator matrix f o r  an R = 

i s  sa id  t o  be dual t o  t h e  encoder whose generator matrix is  

- G, For f ixed encoders, E(D) i s  t h e  matrix of generator func- 

- 

t i ons  f o r  the dual  encoder. 

Figure 1.4 shows a simplified p i c tu re  of a channel w i t h  

addi t ive noise. L e t  the  noise be represented by an e r r o r  

( N ) .  . . ] , where ei (j) E G F ( q )  f o r  a l l  i and j. The e2 ... e 

transform ,of t h e  e r r o r  sequence i s  a ( D )  =[e 

(1) 
2 

(1) (N) (D) , . . . , e - 

D + e2 ( J I D 2  + . . . I  
(j) (j) 

+ el (D) ] , where e(') (D) = eo 

1 5 j < N. Similarly the  

(11 ( N )  (1) 

transform of the  received 
=[ro ... ro 1 e = *  

received 
(N) 

rl r2 
sequence 

sequence g Ll , L2'."] 

the  

L 

r(N) ( D j .  Since t h e  noise i s  addi t ive,  t he  received sequence 

i s  the modulo-q sum of the  transmitted sequence and the  e r ror  

sequence, i.e., 
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I 

= modulo-q adder 

Figo 1.4, Additive noise channel. 
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I n  terms of transforms, equation (40) i s  

- r ( D )  = y ( D )  + g ( D )  e 

Clearly,  f o r  a l l  i and j, 

z Y i  (j) i f  and only i f  e (j) # 0. (42) i 
(j) 

i r 

Thus e (j’ # 0 corresponds t o  an e r r o r  i n  transmission, i 
whereas ei (j’ = 0 corresponds t o  a correct ly  transmitted 

d i g i t .  

A common form of a lgebraic  decoding computes the  syn- 
(N-K) (1) 

s1 .e. 
drome sequence s =[so, gl, . .] = [so ( 1) . . .so 

.*.I a t  -the receiver from the parity-check matrix a s  ( N -K) 
1 S 

follows : 

From equations (37) and (40) it can e a s i l y  be deduced t h a t  

I n  terms of transforms s ( D )  =[s(l) (D) , . . . , S(N-K’ (D) ] , 

N - K ,  and f o r  f ixed  encoders equation (44) can be w r i t t e n  a s  

(45) 
T - s(D) = e ( D )  II (D) . 

Therefore the  syndrome depends only on the  e r r o r s  and not on 

t h e  pa r t i cu la r  codeword transmitted. Any decoding function 

which estimates t h e  e r ro r  sequence from the  syndrome i s  

ca l l ed  a svndrome decoder. Equation (44) and (45) a r e  re- 

f e r r ed  t o  a s  the  syndrome equations. 

It i s  of ten  necessary t o  w r i t e  t he  encoding equations 

over only one constraint  length of transmitted d i g i t s .  I f  
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e.o ] , then l e t  [g] denote the truncated 

vector [q, z+, . . , &]  . Then the encoding equations f o r  

the f i r s t  cons t ra in t  length a r e  

h 

- - [ X G I m  

where [ G I  

(m + l)N columns. 

ind ica tes  t h a t  G has been truncated af ter  

I n  syndrome decoding it is  usual ly  assumed t h a t  the 

e r ro r  d i g i t s  a t  t i m e  u n i t  u,  %, are estimated by looking a t  

the syndrome d i g i t s  %, - f r o m  t i m e  u n i t  u =u+m . . . , 
- 

through t i m e  u n i t  u + E, 0 S u ( 0 0 .  m i s  ca l l ed  the decodinq 
- 

memory, and nA = N ( E  + 1) i s  ca l l ed  the decodinq cons t ra in t  

lenath. Therefore the f irst  constraint  length of syndrome 

equations can be wr i t t en  a s  

T T 

T 

H T(0)  Sr, (0) ... H- (0) s3 m = ["I ;;; -0 m 

T -  ... H (m) -0 

-0 - 9 

- 0 - 0 

(49) 
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- e H  -[ ‘1 
m 

T where[HT] ind ica tes  t h a t  has been truncated a f t e r  - 
m - (E + 1) ( N  - K) columns. m i s  of ten chosen a s  

- 
r n =  max max { i l B i ( U )  # 0 \ (52) 

O(u<m O(i<m 

00 i f  no such i exists. 

For f ixed  encoders equation (52) reduces t o  

= 
(53) 

i f  no such i exis t s .  

Choosing E i n  t h i s  way corresponds t o  defining t h e  decoding 

constraint  length ii 
between the  f i r s t  and l a s t  blocks of e r ro r  d i g i t s  which a f -  

f e c t  the syndrome a t  t i m e  u + E, where u i s  the l e a s t  

value of u which maximizes (52). 

a s  the  number of e r ro r  d i g i t s  inclusive 
A 

max rnax 

For canonic systematic encoders, the  generator matrix 

can be wri t ten a s  

- G =  

Clearly,  

0 - 0 - ‘K . -0 Q (2) : ...](541 
e 

i t  follows t h a t  
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I :Q (1) :O :Q (1) : ... 
K - 0  K -1 

L "  

where INWK i s  the (N - K] x (N - K) 
is  the (N - K) x (N - K] a l l -zero m a t r h .  Since ON -K 

- 0 

* . . . . 
i s  a v a l i d  parity-check matrix f o r  the encoder w i t h  genera- 

t o r  matrix E. For f ixed canonic systematic encoders 

- G =  

and 
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H =  

0 - 
rn rn 

(59) 

i s  a va l id  parity-check matrix. Therefore i f  t h e  decoding 

memory m i s  chosen according t o  equation (52) f o r  periodic 

encoders o r  equation (53) f o r  f ixed encoders, it can be seen 

t h a t  Fi = m fo r  systematic encoders and hence 

w i l l  be r e l a t ed  t o  G f o r  non-systematic encoders i n  Chapter 

= nA. - H A 

111, 

The  two commonly used modes of a lgebraic  decoding have 

been termed feedback decodinq and d e f i n i t e  decodinq by 

Robinson [ 7 1  . Although usually used with syndrome decoding, 

these two decoding modes can be used w i t h  any algebraic de- 

coding technique. 

zo, z1 gal .. 1, then l e t  [ 23 

doubly truncated vector -%, -%+l,. . . , s a ]  . Then the 

syndrome equations from t i m e  u n i t  u through t i m e  u n i t  u + 
can be wri t ten a s  

denote the 
h,h& 

[ I f  z = 

[ 

- = [el - 
u , u+m u-m,u+i;; 

L-s 1 T 
-m 
- H -  (u-G) ... Q 
. . . 
e 

. 
- 0 . . . H T(u+z) -0 . 
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I n  feedback decoding, a t  t i m e  u n i t  u + E a l l  blocks of e r r o r  

d i g i t s  go, glt 

have been decoded correct ly  and a r e  "fed back" and sub- 

%-1 up t o  t i m e  u n i t  u a r e  assumed t o  

t r a c t e d  out of each syndrome equation i n  which they appear. 

Therefore equations (60) become 

and % i s  estimated from equations (61) . 
coding, the decoding memory i s  always chosen t o  be m and 

the feedback decodins constraint  l ena th  nFD = N ( M  + 1); = nA. 

I n  d e f i n i t e  decoding, t he  e r r o r  d i g i t s  up t o  t i m e  u n i t  u 

a r e  not  "fed back" and % i s  estimated d i r e c t l y  from equa- 

?DD is t ions  (60) .  The d e f i n i t e  decodinq constraint  lenqth 

sometimes chosen t o  be t h e  number of e r r o r  d i g i t s  which can 

a f f e c t  equations (60) f o r  u 2 E, i .e, ,  nDD = N (2K + l), but 

it i s  of ten useful  t o  choose it otherwise, a s  w i l l  be seen 

i n  l a t e r  chapters. Figures 1.5 and 1.6 show a syndrome de- 

coder operating i n  the feedback and d e f i n i t e  decoding modes, 

respectively,  f o r  t h e  binary f ixed R = 1/2  encoder w i t h  E ( D )  = 

I n  feedback de- 

[l 1 + D] . 
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= modulo-2 mul t ip l ie r  

Fig. 1.5 A syndrome feedback decoder. 

Fig. 1 . 6  A syndrome d e f i n i t e  decoder. 



11, Distance Defini t ions for  Convolutional Encoders 

I n  t h i s  chapter a number of d i f f e ren t  dis tance measures 

w i l l  be defined f o r  convolutional encoders. Distances be- 

tween codewords i n  a convolutional code a r e  c losely con- 

nected w i t h  the probabi l i ty  of decoding error. For instance,  

it i s  w e l l  known [3]  that  for  an encoder w i t h  feedback de- 

coding minimum dis tance dFD (formerly called dmin), 

e r ro r s  within a feedback decoding constraint  length a r e  guar- 
r; 'i 

anteed correctable  by an algebraic  decoder operating i n  the 

feedback decoding mode, w h e r e  LIJ i s  the l a rges t  in teger  

less than o r  equal t o  I. Hence it i s  usually des i rab le  t o  

design an encoder w i t h  good dis tance properties.  For con- 

venience, i n  the remainder of th i s  thesis only binary codes 

w i l l  be considered, although many of the r e s u l t s  apply t o  

codes defined over l a rge r  alphabets. 

A. Feedback Decoding Minimum Distance 

The standard de f in i t i on  of dis tance f o r  convolutional 

encoders, feedback decoding minimum distance,  dFD, w i l l  now 

be generalized 

Defini t ion 2.1 

%D = min 
O I U <  00 

[x' G ]  1 
u , u+m 

min min 
o<u<m 2&#x I 

U 

t o  time-varying encoders, 

min dJ [ Z G ]  I 

x #XI u , u+m -u-u 

u-1 [XI = [s:] u-1 

= min min q.$ [XG] , [x'G] u+m) = 
O I U < ~  .?r;zq u+m 

= [XI] 
u-1 u-1 P I  

dJ [ Z G ]  , [X'G-J = min min 
u+m u+m O I U < W  

24 
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) 
u+m 

where %( - -1 denotes the Hamming q q ' E Y 1  Cn7 
u+m 

dis tance between the two arguments and the minimization i s  

over a l l  5 and xf  with x # 0 I u <O0. 1 -u 

T h e  second equal i ty  i n  def in i t ion  2.1 follows from the f a c t  

and hence the Hamming dis tance between codewords i s  not 

affected,  The t h i r d  equal i ty  follows from the  f a c t  t h a t  a l l  

pa i r s  of codewords w i t h  [&] # [&' ]  w e r e  already in-  

cluded i n  the minimization f o r  some smaller value of u and 
u-1 u-1 

hence cannot change the  minimum. 

For per iodic  time-varying convolutional encoders w i t h  

period T ,  def in i t ion  2.1 reduces t o  the following def in i t ion  

Of %De 

Defini t ion 2-2 dFD = min min q..+ [x GI ? 

OIu<T x #x I u+n ' 7 - u  

[ZIG] ) = min min %'[E] ' [E']  1.1 
u+m OIu<T x #x I u+m u+m - u 7  

For time-varying encoders w i t h  f i n i t e  memory m < 00 the 

pa t te rn  of the f irst  K ( m  a t  1) rows of G must be repeated some- 

where i n  G. Suppose t h i s  pa t te rn  i s  repeated beginning a t  

row KT ( the  (KT + I) st row of G) where T i s  sone p s i t i v e  

integer .  Then a per iodic  encoder w i t h  period T can be formed 
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by reproducing per iodica l ly  the f i r s t  KT rows of G. It can 

eas i ly  be seen f ron  de f in i t i ons  2.1 and 2.2 t h a t  %D f o r  the 

per iodic  encoder i s  a t  least  a s  great as  %D f o r  the o r ig ina l  

encoder, Similar arguments t o  the above can be given fo r  

each of the dis tance measures defined i n  this  chapter. Hence 

a s  f a r  a s  dis tance propert ies  a r e  concerned it i s  of no value 

t o  consider non-periodic time-varying encoders. Therefore a l l  

time-varying encoders w i l l  be considered t o  be periodic. 

F ina l ly ,  dFD w i l l  now be defined for  f ixed  encoders. 

%( [x s] [x'G] 1 = min 
m m %  # Xo' %D = min Defini t ion 2.3 

# Zol 

Because of the l i n e a r i t y  of convolutional encoders, defin- 

i t i o n s  2 .2  and 2.3 can be simplified. 

Theorem 2.1  %D = min min w ( [ a s ]  F = m i n  
u+m O l u < T  H - 

O l u < T  + # p  

wH( [ y] ) , where w ( * )  denotes the Hamming weight 
H min 

# 2  u+m 
%.l 

of the argument. 

Proof L e t  2 and y' be any two information sequences w i t h  x -u 

I such t h a t  [y] - cx E l  and [Y'] = [Z'G] , 
#%I 

and le t  3" = 3 + x' e Then + I #  Q and [yl] = [x"G] - 

= [s g + x's] = [XG] + [Z'G] - 

+ Cy'] 

- 
u+m u+m u+m u+m 

- 
ui-m u+m 

- 
u+m u+m u+m 

s ince  the encoder is  l inea r .  Therefore, 

= WH( [Y'I] 
ui-m u+m U+Xl 
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and the  theorem follows immediately. 1 
For f ixed encoders, Wozencraft and Reiffen [3] proved 

t h a t  

A generalization of def in i t ions  2.2 and 2.3 w i l l  prove 

useful  l a t e r  i n  t h e  construction of convolutional encoders 

with high 

, of a period- 
dj  

- Definit ion 2.4 The order j column distance,  

i c  encoder i s  given by 

1, j = 0,1 ,2 , . . . t  and c$= 
u+ j 

min (Cy1 [Yl] 
u + j  1 H  

I x f r r  
U U 

Definit ion 2 - 5  The order j column distance,  d of a f ixed 

encoder i s  given by 
j '  

j = 0 , 1 t 2 , . e e ,  and & =  l i m  d I 
j+oO j '  

Some simple propert ies  of t h e  column distance w i l l  now be 

collected.  The f i r s t  property follows as  a d i r e c t  consequence 

of de f in i t i ons  2.2 through 2.5, and appl ies  t o  both periodic 

and f ixed encoders. 

%D = dm.I 

The next property can be proved by a s l i g h t  modification of 

t h e  proof of theorem 2.1. 
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d = rnin m i n  wH( [ x  G ]  ) = min 
J : O I u < T  s # s  u+j O ( u < T  

wH( cy] ) f o r  per iodic  encoders and d = rnin 
x # 9  u+j  j + # S  
m i n  
-u 

wH( [z G ]  = min wH ( [y] f o r  f ixed  encoders , 
x #,Q j -0 j 

L 
be the ith row of the generator matrix of a fixed encoder, 

1 5 i 5 K, g. contains N generator sequences and i s  cal led 
1 

( 1) t h  ( 1) (N) 
the * Then l e t  pi] . = [goi ...goi . - .gj i  e.. 

J 
be the ( j  + 1)N-tuple consisting of t h e  f i r s t  ( j  + l ) N  g j  i 

entries i n  g e 

next property f o r  f ixed encoders. 

This notation s impl i f ies  the statement of t h e  
i 

(1) d .  5 rnin min w ( [goi (u) ... H 
J O < U < T  I S ~ ~ K  

(u) * .  *gji  (1) (u) . .gji (N) (u) ] ) f o r  periodic encoders 90 i - 

) f o r  f ixed  encoders, j = 0,1,2, * .  - and d .  5 rnin 
wH( [.i] 

J I < ~ S K  
Proof The proof w i l l  be given only f o r  f ixed encoders i n  

order t o  simplify the  notation. 

such t h a t  wH( [q,] 
j j 

-1 -2 
t h  

i n  the  posi t ion,  Therefore [x G ]  = [gt] and hence by 

property C2, d .  5 rnin 

L e t  & be the integer ,  1 5 8 I K, 
I wH( [SIi] ) , 1 5 i 5 K, i # .&. Then 

O,-,O 1 o...o] , x = x = ... = - 0, where the 1 i s  

j j 

wH( [gi] 1,  j = 0,1,2,... .I 
J 1 5 i 5 ~  j 
d .  5 dj+l, j = 0,1,2,..., f o r  both per iodic  and 

J 
f ixed encoders 
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- Proof [ y J - 
u+ j +1 . But rnin 1 Olu<T [Cel u+j Y u+j+l  

). , Therefore d . I dj+l, 
J = min min wH( [ y ]  

OIu<T x+#" u+ j +1 

j = 0,1,2*.* The proof for  f ixed  encoders i s  similar and 

hence i s  omitted.1 

Be Defin i te  Decoding Minimum Distance 

A def in i t e  decodina minimum dis tance,  dnD, and a de f in i t e  

decodina cons t ra in t  lenclth, sD, w i l l  be defined such t h a t  

e r ro r s  within a d e f i n i t e  decoding cons t ra in t  length 

a r e  guaranteed correctable for  codes being used w i t h  de f in i t e  

decoding. It i s  convenient t o  d is t inguish  non-systematic en- 

coders from systematic encoders, 

- '1 

1 e Non-systematic Encoders 

Robinson [ 71 suggested the following def in i t ions  of ?ID 
and 

t i c  encoders and the de f in i t i on  of d,,,D w i l l  be generalized 

t o  per iodic  encoders. 

Defini t ion 2.6 

i s  the number of e r r o r  d i g i t s  w h i c h  can a f f e c t  the syndrome 

These de f in i t i ons  w i l l  be r e s t r i c t e d  t o  non-systema- 

The d e f i n i t e  decoding constraint  length %D 

- 
%D - equations from t i m e  u through t i m e  u + E, u 2 E, i.e., 

(2rn + 1)N.I 
Defini t ion 2,7 %D = min min 

2 f i i 5 u < 2 E t T  % # % '  
.[&GI - - )I = min 

u-E,u+E u-m,u+m 2 m I u < 2 K + T  

'H' LEI - - ' CY'] - - k  u-m,u+m 
min 
x P X l  u-m,u+m 
-TI -U 
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where the minimization i s  over a l l  

2ii 5 u < 2'iii + T.1 

and y '  w i t h  LE, # s!, 

For f ixed  encoders, de f in i t i on  2.7 reduces t o  Robinson's 

[ 7 1  de f in i t i on  of %D. 

1.1 
K, 3m 

, Cy'] iii, 3iii 
= min d&$ cy3 x - # XI- -2m -2m 

A s imi la r  argument t o  t h a t  used t o  prove theorem 2.1  

r e s u l t s  i n  the following s implif icat ion of de f in i t i on  2.7. 

1 
2fFI_(u< 2 E + T  &$4 u-m, u+m 

WH( [x G ]  - - Theorem 2.2 dDD = min min 

= min min WH( Cy1 - - 1-1  
2iii L( u < 2iii+T % # u-m,u+m 

Robinson [7]  has  a l s o  shown t h a t  f o r  f i xed  encoders de f in i t i on  

2.8 can be s implif ied t o  

2. Systematic Encoders 

For canonic systematic encoders the syndrome equations 

from t i m e  u n i t  u through t i m e  u n i t  u + fii can be wr i t t en  a s  
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= [ e ]  
U @ U + E  u-z, u+z 

1s 1 Q- (u-$ 
--m 

.. 0 . .  

ON -K 

. 

- 0 ... 

where each gi.(u) 

matrix of elements from G F ( q ) .  Hence the l a s t  ( N  - K)' d i g i t s  

0 5 i 5 m,  0 < u < 00, i s  a K x ( N  - K) 

i n  e - e -  and e i.e., the d i g i t s  i n  

the p a r i t v  PO s i t i o n s  of a l l  the e r r o r  blocks previous t o  
7 - 1  , T - m '  y - m + l '  . * * J  su-2' 

t i m e  u, do not a f f e c t  the syndrome equations. Therefore de- 

f i n i t i o n s  2.6f 2.7, and 2.8 can be modified f o r  systematic 

encoders a s  suggested by Massey [ 81 . 
Defini t ion 2.9 

a f f e c t  the syndrome equations from t i m e  u through t i m e  u + E, 

u 2 m, i s  N(K + 1) + 6 f o r  systematic encoders.[ 

nDDf the number of e r ro r  d i g i t s  which can 

- 
min 

% # % I  

Defini t ion 2-10 d-DD = min 
2 i i i < u < 2 K + T  

u u+m 
u , u+m u-m,u-1 f [" 'G] u-m,u-1 

f o r  per iodic  systematic encoders. [ 
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m, 2m-1 
Definit ion 2.11 4>D = m i n  

x - # E&. -2m 
[ E ' ]  - - , [E'C] 1 f o r  f ixed  systema- 

2m, 3;] [z G )  - - 
2m, 3m m,  2m-1 

t i c  encoders, I 
Again, 

2,1 and 2 - 2  

i t i o n  2 -10 ,  

Theorem 2,3 

a s imilar  argument t o  t h a t  used t o  prove theorems 

r e s u l t s  i n  t h e  following s implif icat ion of def in -  

4>D = min min wH ( [ L Z )  - ? 2if; 5 u < 2E+T & # 0 u-m,u-1 

For f ixed  encoders, Massey [8) has shown t h a t  def in i t ion  2.11 

can a l s o  be simplified t o  

- - . [ z C ]  
([[a) m, 2m-1 2 ~ 3 ~ 1  ' e %D = m i n  

-2m 
H 

x -  # o  
(65) 

A s  discussed i n  Chapter I, i f  t he  decoding memory i s  

chosen according t o  equation (52) f o r  periodic systematic en- 

coders or equation (53) f o r  f ixed systematic encoders, then 

the  decoding memory i s  the  same a s  the  encoding memory, and E 

can be replaced by m i n  def in i t ions  2.9 through 2.11, i n  

theorem 2.3, and i n  equation (65).  

I t  can e a s i l y  be seen from de f in i t i ons  2.2, 2.7, and 

2.10 t h a t  f o r  per iodic  encoders 

a r e s u l t  which i s  w e l l  known [7] f o r  f ixed  encoders. 
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For each de f in i t i on  of "bD i n  Section II.B, an argu- 

ment s imilar  t o  Robinson's [7] f o r  f ixed  non-systematic 

encoders can be used t o  show t h a t  k2- 'J e r r o r s  within 

a d e f i n i t e  decoding constraint  length are guaranteed correct-  

able  by an algebraic  decoder operating i n  t h e  d e f i n i t e  de- 

coding mode, 

C, Free Distance 

For decoding schemes such a s  sequential  decoding, i n  

which the decoder i s  not constrained t o  consider only one 

constraint  length of received d i g i t s  while attempting t o  de- 

code a pa r t i cu la r  block of t ransmit ted digi ts ,  but may search 

over a much longer port ion of the received sequence, dFD and 

"bD a r e  no longer meaningful. Consequently a d i f f e ren t  d i s -  

tance measure, ca l led  the free dis tance by Massey [9] , and 

s tudied by M c E l i e c e  and Rumsey [lo] and Neumann [ll] , w i l l  

be considered, Free dis tance i s  defined over the e n t i r e  en- 

coded sequence and hence i s  appropriate f o r  a decoder which 

makes i t s  decis ions on the bas is  of t h e  e n t i r e  received se- 

quence 

Before def ining free dis tance,  a more general dis tance 

measure w i l l  be introduced. 

Defini t ion 2,12 

encoder i s  given 

The order  j row dis tance,  r of a per iodic  
j' 

bY 

u +j u+j 

L J  L J  u-1 u-1 
00 

j = 0,1,2, and roo = l i m  r w h e r e  Q represents  an 
j + m  j '  

i n f i n i t e  concatenation of a l l -zero K-tuples. 1 
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Defini t ion 2.13 The order j row distance,  r of a f ixed 
j '  

encoder i s  given by 

2 r c e 0 1  and roo = l i m  r - 1  
r + m  j 

Some simple propert ies  of the  row distance w i l l  now be 

given, The f i r s t  property can be proved by again s l i g h t l y  

modifying t h e  proof of theorem 2.1 

wH( r = min min 
j Olu<T +#Q 

[x] =o - 
u-1 

wH( f o r  per iodic  encoders and r 

f ixed encoders, j = 0,1,2,... .I 
A s  was seen i n  property C4,  t he  column distance d .  cannot de- 

crease w i t h  increasing j .  
3 

J u s t  t he  opposite i s  t r u e  f o r  row 

dis tance,  a s  w i l l  now be shown. 

r 

f ixed encoders. 

2 rj+lt j = 0,1,2,..., f o r  both periodic and 
j 

= o , % # o  u-l 1 . Then Y con- - 

Proof L e t  Y =/[[&I 
u+j+l  

u-1 
K 

y' = 

t a i n s  2 and Y' contains 2Kj ( 2  -1) 

elements, Clearly Y' C Y. Therefore rnin w,([[Z] I 

x # Q  u+j+l -u 
[ E ]  = - 0 

u-1 
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j = 0,1,2, * .  * ,  f o r  per iodic  encoders. The proof f o r  f ixed 

encoders follows i n  a s imilar  fashion.1 

w (9.) f o r  f ixed encoders, j = 0,1,2, . . . . H i  r I min 
j I < ~ I K  

Proof The proof w i l l  be given only f o r  f ixed encoders i n  

order t o  simplify t h e  notation. ro = min wH(gi) 
l _ ( i I K  
5 ro = min Therefore property R2 implies t h a t  r 

j l l i ( K  

wH(gi), j = 0,1,2,..- . I 
NOW a simple r e s u l t  r e l a t i n g  the column distance d t o  

j 
the  row distance r w i l l  be given. 

Theorem 2 - 4  d I d < ... I d I roo I ... I r I r f o r  both 

periodic and f ixed  encoders. 

j 

0 1 -  00 1 0 

Proof 

i n  order t o  simplify the notation involved. 

Again the  proof w i l l  be given only f o r  f ixed encoders 

L e t  y = [ [ X I  , 
- 

j = 0,1,:2,,.. e Hence w,(Y') I W H ( y )  and roo = l i m  r = l i m  jToo j j+oo 

m i n  wH( [[XI , "1 ;z l i m  min wH( [XG] = q ) # o  j j4* 1r ,#9 j 

l i r n  d = Clearly property C 4  implies t h a t  d I l i m  
j400 j j j I - - too  

= rm 
d = and property R2 implies t h a t  r 2 l i m  
j l  j 3 1 - - r o o  

f o r  a l l  f i n i t e  j, The theorem then follows immediately from 

these two properties.  I 
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Now the f r e e  distance,  w i l l  be defined a s  t h e  

m i n i m u m  weight encoded sequence such t h a t  x # 0. 

Definit ion 2.14 %REE = min 
X #  

and f ixed  encoders. 1 
Note t h a t  dFREE i s  a property 

Some propert ies  of sREE 

w H ( z  g) f o r  both - 0 

of t h e  code i t s e l f .  

per iodic  

w i l l  be presented next. 

= dm f o r  both f ixed  and per iodic  encoders. 
!FREE 

Proof For f ixed  encoders, = l i m  min wH( [ z g ]  = 
j + m  +,#O j 

min 

$ # 0. Then le t  

wH(x (3) . Now let  n be the smallest integer  such t h a t  

be t h e  information sequence whose t rans-  
Z O  

--n 
-n form i s  x'(D) = D & ( D ) ,  where z ( D )  i s  t h e  

Clearly X I  # 2, i s  casual, and w H ( z l g )  = 

every codeword produced by a non-zero input 
0 

the  same weight a s  the codeword produced by 
- - x '  w i t h  # 0. Therefore rnin WH(X - 

* # o  

transform of 3. 

wH(x g) . Hence 

sequence x has 

the  input sequence 

min w (3 g) and 
H X # O  

= The proof f o r  per iodic  encoders follows i n  a !FREE 
s imilar  fashion, 1 
The second property follows d i r ec t ly  from property C1, theorem 

2.4, property F1, and def in i t ion  2.14. 

coders and %D %REE < - min I wH (ai) f o r  f ixed  encoders. I 

T h e  t h i r d  property shows t h a t  sREE i s  unchanged if the set 

of allowable input sequences i s  expanded t o  include all 

r a t iona l  sequences, Hence t h i s  property serves a s  an a l t e r -  

nate def in i t ion  of dFREE. 
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= min wH($ , where t h e  minimization 
X Z Q  d F R ~ E  

I Propertv F 3  

i s  over a l l  r a t iona l  input sequences y # Q, f o r  both per- 

iod ic  and f ixed encoders. 

Proof L e t  E be any non-causal r a t iona l  input sequence and 

le t  n be the  l e a s t  integer  such t h a t  & #,'g. Then l e t  y' be 
I L  kT 

the input  sequence whose transform i s  3' (D) = D - x(D), where 

x(D) i s  the  transform of 3, T i s  t h e  period of t he  encoder, 

and k i s  the l e a s t  pos i t ive  integer  such t h a t  kT 2 - n. 

Clearly y' i s  causal,  E'  # Q, and wH(y') - = wx(r>,  where 41' 

i s  the codeword produced by x' and y i s  t h e  codeword produced 

by n;, Hence every codeword produced by a non-causal input 

sequence y has the same weight a s  t he  codeword produced by 

the  causal input sequence X I .  Therefore the  set of input 

sequences over which t h e  Hamming weight of codewords i s  mini- 

mized i n  the de f in i t i on  of %REE can be expanded t o  include 

a l l  r a t iona l  sequences without changing 

The four th  property appl ies  only t o  f ixed polynomial encoders, 

i r e o ,  t o  f ixed encoders whose matrix of generator functions 

%REE. I 

- G(D) contains only polynomial elements. 

For a l l  f ixed polynomial encoders w i t h  a feed- 

= d  = d  - - - ... = d - - r- - ... - - 
j +1 00 %REE j 

forward inverse,  

r j  -m f o r  some f i n i t e  j .  

Proof A f ixed polynomial encoder has a feedforward inverse 

i f  t he re  e x i s t s  an N x K matrix of polynomials G- l (D)  such 

t h a t  G(D) G-~(D) = D I ~ ,  where L i s  ca l led  the  delay of the 
L 
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inverse, 

m i s  the memory of the encoder. Necessary and su f f i c i en t  

conditions f o r  a f ixed  encoder t o  have a feedforward ( i .e- ,  

polynomial) inverse a r e  given by Olson [13] . 

Nassey and Sain [12] have shown t h a t  L I Km, where 

Clearly, i f  

L D %(ID) f o r  any input sequence whose transform i s  x(D). 

In  minimizing w (3 over a l l  input sequences x # 0, 
H 

it is  not  necessary t o  consider any input sequence with a 

s t r i n g  of m o r  more blocks of 2 ' s  i n  it since following such 

a s t r i n g  with addi t ional  non-zero blocks can only add t o  t h e  

weight of t he  codeword. A l s o ,  property F2 implies t h a t  

can never be more than N ( m  + 1) , t he  maximum number of 1's 
!FREE 

i s  f i n i t e .  
dFREE 

i n  any generator, i.e., 

Now le t  M be t h e  maximum degree of t h e  

- G (D), Clearly, i f  y contains a s t r i n g  of 

more blocks of Q l s ,  must contain a s t r i n g  

-1 
polynomials i n  

(m + M + 1) o r  

of m o r  more blocks 

of Q ' s ,  Hence f o r  each input sequence x with x # 0 which is  -0 
capable of producing t h e  m i n i m u m  f r e e  weight codeword, y # 2 
and each successive s t r i n g  of (m + M + 1) blocks of encoded 

L 

d i g i t s  must contain a t  l e a s t  one non-zero block. Therefore 

the  f i r s t  (Nm f N - 1) (M + m + 1) + L + 1 blocks of encoded 

d i g i t s  must have weight a t  l e a s t  N ( m  + 1) fo r  all encoded 

sequences capable of producing t h e  minimum f r e e  weight code- 

word. 

d(Nm + N - 1) (M + m + 1) + L 

This implies t h a t  %REE = d, = min WH(X s ) = 

+ # Q  

30 # 0 
and t h a t  sREE = = min 

wH(x G)! = r Hence from 
( N m + N - l )  ( M + m + l )  + L - m o  
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- - theorem 2-4, SREE = dj = dj+l- ... = c&,= roo- ... = r j -m 

f o r  some f i n i t e  j e I 
Property F4 i s  a very crude bound on the  length of in-  

formation sequence needed t o  produce the m i n i m u m  f r e e  weight 

codeword. I t  i s  conjectured t h a t  t h i s  r e s u l t  can be strength- 

ened considerably by more de ta i led  arguments. 

has suggested t h a t  the  t r u e  bound i s  m, i.e., t h a t  sREE = r e 

However, a s  w i l l  be shown i n  Chapter V, t h i s  i s  not t he  case 

Neumann [ll] 

m 

i n  general although it may be t r u e  f o r  R = 1/2 systematic 

f ixed encoders e 

Consider an R = 1/2 f ixed plynomial  encoder 

with 

1 1  1 1  0 0 ... 
. Clearly do = dl - - ... - - d,= 

0 

- J ... - roo = 4. Since # roof t h i s  en- dFREE = 2 and ro = rl - 

coder does not have a feedforward inverse.1 

- t 

Consider an algebraic  decoder which decodes i n  llframesll 

of /e + 1 blocks of received d i g i t s ,  >> m, and which decodes 

i n t o  the  encoded sequence LEI  $/ each received sequence 

such t h a t  d ( [ L] ~I [E] &)is  m i n i m u m .  A feedback decoder 

operating over such a frame w i l l  make a decoding e r r o r  f o r  

a t  l e a s t  one 

a s  the  above 

e r r o r s  i n  the  frame where- I dFD ; '1 pat te rn  of 

a lgebraic  decoder cannot make an e r ror  un le s s  

e r r o r s  occur i n  the frame. 
L 2  J 
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Now consider t he  binary symmetric channel (BSC) shown 

i n  Figure 2.1. p i s  the d i g i t  e r r o r  probabili ty.  L e t  q be 

the probabi l i ty  t h a t  e d i g i t s  w e r e  received incorrect ly  i n  n 

successive uses of the channel, Clearly 

Now le t  q' be the  probabi l i ty  t h a t  e + 1 d i g i t s  w e r e  received 

incorrect ly  i n  n successive uses of t h e  channel. Then 

- gP - n-e-1 
1 - P  

q' = P e+l(l - p) . 
I f  p i s  very small, i.e., p << 1, then 

q' << q 0 

Therefore if p i s  small enough it can be seen t h a t  t he  de- 

coding e r r o r  probabi l i ty  i s  a function only of t h e  minimum 

number of incor rec t ly  received d i g i t s  i n  the  frame t h a t  can 

cause a decoding e r ro r ,  since heavier e r r o r  pa t te rns  occur 

with negl igible  probabili ty.  Since i n  general r the  $-m > %D' 
decoding e r ro r  probabi l i ty  i s  lower f o r  t h e  decoder operating 

over the whole frame than f o r  t he  feedback decoder. 

Therefore r is  the  appropriate distance measure f o r  &-m 
the  decoder which decodes i n  frames of & + 1 received blocks 

since it determines the  decoding e r r o r  probabili ty.  Property 

F4 implies t h a t  if & i s  la rge  enough, r&-m = 

becomes the appropriate distance measure f o r  t he  decoder which 

decodes i n  frames of $ + 1 received blocks. 

and dFmE 

A sequential decoder, although not algebraic,  does de- 

%REE code i n  frames of many received blocks. Hence 
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0 

Fig. 2.1.  A binary symmetric channel. 
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s e e m  t o  be a more appropriate distance measure than either 

%D or  $D f o r  encoders used with sequential decoding. 

ter  V I  presents simulation r e s u l t s  which corroborate t h i s  

chap- 

reasoning, 

E). Reverse Distance 

Consider an encoder G with generator matrix 

Then f o r  any of t h e  distance measures defined i n  t h i s  chapter, 

the following de f in i t i on  holds. 

Definit ion 2 - 1 5  The reverse distance of the  encoder G i s  

t h e  distance of the encoder GI  with generator matrix 
/ 

If c;l = (3, then the  encoder G i s  ca l led  reversible.  Rever- 

sible encoders have been studied by Massey [14 ]  and Robinson 

[151 - 
Reverse distance w i l l  prove useful  i n  Chapter V, when 

some methods f o r  calculat ing dFREE a r e  derived. 



111. Encoder Equivalence and Syndrome Formation 

A,  Encoder Equivalence 

There i s  considerable i n t e r e s t  i n  finding systematic 

equivalents f o r  non-systematic encoders f o r  t h e  following 

reasons: (1) systematic encoders a r e  i n  general simpler t o  

implement than non-systematic encoders; (2) the encoded 

sequences from systematic encoders possess the  "quick look" 

property, ice., t h e  noisy version of t h e  information sequence 

i s  d i r e c t l y  avai lable  a t  t h e  receiver. 

A s  w i l l  be shown i n  l a t e r  chapters, f o r  a given r a t e  

and a given constraint  length,  non-systematic encoders a r e  

superior t o  systematic encoders f o r  sequential decoding be- 

cause l a rge r  f r e e  distances a r e  achievable. For some alge- 

braic  decoding techniques, however, such a s  feedback de- 

coding, where column distance i s  t h e  important parameter, 

non-systematic encoders a r e  no longer superior and it i s  

usually desirable  t o  use  only systematic encoders. 

1, Rational Equivalence 

Definit ion 3.1 Two encoders a r e  r a t iona l ly  equivalent i f  

they have the same set of output sequences over t he  set of 

a l l  r a t iona l  input sequences. I 
Consider a f ixed  non-systematic encoder with a matrix 

of generator functions G ( D ) .  Then 

43 
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where R-'(D) i s  the K x K inverse matr ix  of one of t h e  non- 

s ingular  K x K s u h a t r i c e s  of G(D) e (The def in i t ion  of a con- 

volut ional  encoder guarantees t h a t  some K x K submatrix of 

- G (D) i s  non-singular: ) 

Theref ore 

.A -1 where G ( D )  = x ( D )  R(D)  G(D) = (D) G(D) and &D) i s  i n  

systematic form, Hence i f  G(D)' i s  real izable ,  it i s  a system- A 

a t i c  r a t iona l  equivalent of G ( D ) .  However, i n  general there 

i s  no guarantee t h a t  G(D) be real izable .  
A 

Since g ( D )  i s  j u s t  a K x K submatrix of G(D) it contains 

only r ea l i zab le  functions. Therefore R-'(D) the matrix of 

cofactors  of R(D)  divided by det  [&(D)] 

rea l izab le  functions if det  [ E(D)] has  a non-zero constant 

term. 

i s  t h a t  det have a non-zero constant term. 

contains only 

Hence a su f f i c i en t  condition f o r  &D) t o  be rea l izable  

Consider t he  R = 2/3 f ixed binary non-systematic 
1+D 

D/l+D l / l + D  
Then det [E( ] = 1+D and R''(D) 

Hence G(D) = 

valent  of G(D) .  I 
i s  a systematic ra t iona l  equi- 

A 1 0 l+D+D 

0 1 1+D 

Consider the R = 2/3 f ixed  binary non-systematic 

. Choose R(D) = 
D 

1 1+D 

[ D  D 
encoder w i t h  G(D) = 

Then det  [g(D)]  = D and &-l (D)  = 
2 
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A i s  not  real izable .  But i f  one 
o 1 ~ + D / D  

-1 , then de t  = D and g (D) = 
1+D D 

D D 

chooses R(D) = 

In  t h i s  case A G(D) = .]is i n  systematic form 
D 0 1  

and i s  rea l izable  even though de t  R(D) has  a zero constant 

term. Hence t h i s  G(D) i s  a systematic r a t iona l  equivalent of 
A [- 1 

I n  example 3.2, note t h a t  d, = 2 f o r  the encoder with 
I 

1+D 1 0 - while the  information sequence - A - 
G(D' = [ D 0 11 
[01,10] produces a codeword [ y ] 

f o r  the r a t iona l ly  equivalent encoder w i t h  C;(D) 

=[000,001] with weight 1 
1 1+D D 1 

=[.D D D]' 

so t h a t  dl = 1 f o r  t h i s  code. 

not necessar i ly  imply equivalence of column distances.  

Hence r a t iona l  equivalence does 

2 Causal Equivalence 

Defini t ion 3 .2  The  set of causally driven output sequences 

of t h e  encoder G ,  (CD(lS)G, i s  the set of a l l  output sequences 

produced by causal input  sequences. I 
Defini t ion 3.3 Two encoders G and G a r e  causally equivalent A 

if they have the same set of causally driven output sequences, 

i o e o ,  i f  ( C D O S ) ~  = (cDos)~.~ 

Lemma 3-1 

(CDOS)@ then f o r  any two causal information sequences 3 and 

For t w o  f ixed encoders G and $, i f  (CD0SJG = 

A A A  x # Q i f  and only i f  A zo # 0. 
-0 - x such t h a t  x G = B G, 
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A Proof A s s u m e  .+, = 0, x # 0. L e t  n be the l e a s t  pos i t i ve  

in teger  such t h a t  x # 0. Then the information sequence 

whose transform i s  D-nx(D) i s  causal and produces the output 

sequence whose  transform i s  y ( D )  = Dmnz(D) G(D) .  Therefore 

e ( D ]  = D x ( D )  $(D). Since the de f in i t i on  of an encoder 

implies t h a t  no two information sequences can produce the 

same output sequence, D x ( D )  i s  the transform of the only 

input sequence t o  G w h i c h  can produce y. But the sequence 

whose transform i s  D x ( D )  i s  not causal,  contradicting the 

causal equivalence of G and G. The only i f  pa r t  of the 

proof follows exact ly  a s  above-1 

-0 

--n 

-m 

-n4 
A 

-nA 

A 

For a f ixed  encoder G,  assume det &(D) has a non- 

zero constant term, i .e. ,  (D) i s  real izable .  Then i f  
A -1 - x(D)  i s  causal, g ( D )  = B(D)  & 

from equations (71) and (73) t h a t  

-1 [ I  
(D) i s  causal a n d w i t  follows 

A l s o  i f  y ( D )  i s  causal,  then A(D) = x ( D )  &(D) i s  causal and 

(CDOS)G C (CD0S)G . (7 5 )  

Hence 

(cDos)G = (coos), (761 

and the two encoders have the same set of causally driven 

output sequences, Therefore lemma 3.1 implies t h a t  

A 
d j  = d j = 0,1,2,..-, 

j '  
(77) 

A 
where d i s  the order  j column dis tance of G and d i s  the 

order j column dis tance of G, Theorem 3,1 summarizes the 
j 

A 
j 

above r e s u l t s ,  
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Theorem 3-1 

of G(D] I f  det &(D) has a non-zero constant term, then 
A 
_. G(D) = gP1(~) G(D) i s  a systematic causal equivalent of CJD) 

and d = d I j = 0 , 1 , 2 , ~ ~ ~  e l  

L e t  &(D) be a X x  K matrix formed w i t h  K columns 

1 
A 

j j 

(9 g ( D )  has a zero constant term f o r  a l l  1 
possible choices of g ( D ) ,  a systematic causal equivalent may 

not exist, In  t h i s  case, a s  w i l l  next be shown, a ra t ion-  

a l l y  equivalent encoder G can be found such t h a t  d .  < - d , 

j = 0, P, 2,  a and such t h a t  G has  a systematic causal 

N N 

N 3 j 

equivalent. T h e  following procedure w i l l  produce the en- 

coder G. 
N 

(Assume the numerators and denominators of the gen- 

e ra to r  funct ions of G are r e l a t ive ly  p r i m e  polynomials.) 

Convert G(D) t o  a polynomial matrix (D) by multi- - 
plying each r o w  of p ( D )  by the l e a s t  common mult iple  of the 

denominators of i t s  generator functions,  I 
Clearly this  step preserves ra t iona l  equivalence, 

- GI (B) = 

0 L (D) K 
0 

where L . ( D )  i s  the l e a s t  common mult iple  of the denominators 

of the generator funct ions i n  r o w  i, 1 I i 2 K, L e t  
1 

e 
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Then 

i s  rea l izable  s ince G(D) rea l izable  implies that  each Li(D) 

has a non-zero constant term, Therefore i f  x ' ( D )  i s  causal, 

i s  causal,  A l s o  i f  g ( D )  i s  causal, then x'(D) = x ( D )  LU1(D) 

- - [ x ( l )  (D)/E1(D), *.. ,x(K) (D)/LK(D)] i s  causal. Hence step 1 
<%i& 

preserves causal equivalence, 

N o t e  t h a t  s ince det [Ft(D)] i s  assumed t o  have a zero 

constant term, d e t  Eo = 0 f o r  a l l  (!) possible choices of 

I R ( D ) ,  where so i s  the  K x K matrix of constant terms of 
[ I  

- R ( D ) ,  Therefore rank < K and s ince Go' = IKgo, rank 
c - 
LS'] < K. 

Convert (D) t o  a matrix GI1 (D) i n  w h i c h  the K t h  

r o w  of GIi i ,e. ,  the constant terms i n  the K t h  r o w  of GI1 (D) , -0' 
i s  al l -zero by rearranging the rows of G 1 ( D )  and then adding 

a l i n e a r  sca la r  combination of the f i r s t  (K-1) rows of G' (D) 

t o  r o w  K. 1 
Again t h i s  s t ep  c lear ly  preserves r a t iona l  equivalence. 

After rearranging 
1 0  

- GI1 (D) = 
O P  
* *  

* e  

e a  

the 
*.e 

e e r  

rows of 

1 c2 0 0 1  
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where each C ,  E GF (2)  and CK # 0. L e t  
1 

- C(D) = 
1 0 

e 

C 
K 

Clearly C(D) i s  non-singular and the proof t h a t  causal 

equivalence i s  preserved i s  s imilar  t o  the proof i n  s t ep  1. 

Convert GIi (D) t o  a matrix GI1 I (D) by multiplying 

row K of ,I1 (D)' by D-I. I 
Since  the row space of GIi(D) over a l l  ra t iona l  input  sequences 

i s  not changed by multiplying the Kth row of s t l ( D )  by D e l ,  

- GI1 I (D) i s  r a t iona l ly  equivalent t o  GI1 (D) e 

- G"' (D) = E(D) 2" (D) , (83) 

w h e r e  

- E(D) = 1 1 0 e.. 0 
0 1 ..e 0 

i s  non-singular and non-realizable. Note t h a t  

-1 E (D) = 
0 1 0 

e 

0 0 ..* D 

i s  real izable .  Therefore i f  3'' (D) i s  causal,  then ~ " l  (D) = 
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However, the encoders GIt and G I i t  a r e  not i n  general 

causal ly  equivalent,  s ince XIi I (D] causal does not imply t h a t  

x i l ( ~ )  = x i i t  (I)) g ( D )  i s  causal. Therefore the (CDOS) set i s  - - 
i n  general  enlarged i n  step 3,  and the encoder G I t i  i s  sa id  

t o  be t o  the encoder GIi. I t  remains t o  

show that  d" I 2 d" j = O,l, 2, , w h e r e  dl! i s  the order j 

column dis tance of GI i '  and d'! i s  the order  j column dis tance 

of GIi-  

j j' J 

J 

Case l L e t  gi I (D) be the transform of a causal input  se- 

(D) = zit t (D) E ( D )  quence w i t h  s:'# 0, X 

i s  causal and has  go # 0, 

(K)i i '  I = 0. Then 
0 

Hence p" (D) = 2'' (D) Pl(D); = zit I (D) 

J J 
Case 2 L e t  (D)\ be the transform of a causal input  se- 

(K' i '  ' # 0 and l e t  y l I t  I (D): = quence w i t h  x 

- G i t ( D )  = Dz"(D)' = D g t t  (D) E ( D )  = [Dx 

t (D) t (D) e Then 0 
(D)i , (K-1) I '  

I '  (DF , . . . r DX 
A 

I" (D) ] i s  causal, has  4 # 0, and produces an output se- 

quence whose transform i s  si (DI = 2' (D] Gi' (D) = - 2' (D) Z - l ( D )  

- G I ~ I  (D) = mll1 (D) .) 

e * *  . I  
Clearly wH( [?I] 2 wH([y1ii]  F, j = 0 ~ 1 ~ 2 ,  

j j 

Cases 1 and 2 imply t h a t  d" 2 dit j = 0,1,2, e e . Therefore 

causal dominance i m p l i e s  t h a t  the column distances cannot be 
j j' 

decreased, Also, equations (83) and (84) imply t h a t  mIII 2 mil ,  

w h e r e  mil I i s  the memory of GIi I and mli i s  the memory of GIt, 

A t  t h i s  point ,  steps 2 and 3 a r e  repeated u n t i l  an en- 
N 

N N coder G i s  obtained such t h a t  rank G 

i s  causal ly  dominant t o  G. 

= K, m 2 m, and G 

Then a K x K subanatrix E ( D )  of 

[I01 
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G(D) can be found such t h a t  det R(D)  has a non-zero con- [- 1 w - 
A s t an t  term. Hence from theorem 3.1 a systematic encoder G 

with G(D)  = & (D) E ( D )  can be found which i s  r a t iona l ly  A --1 

equivalent t o  and causally dominant t o  G. These r e s u l t s l a r e  

summarized i n  t h e  following def in i t ion  and theorem. 

Definit ion 3 - 5  The encoder GI1' i s  causallv dominant t o  

the  encoder GI1 i f  (CDOS) I 3 ( C ~ s ) G , l . l  

Theorem 3.2 For an encoder G w i t h  a matrix of generator 

functions G ( D ) ,  i f  no K x K s u h a t r i x  &(D) of g ( D )  e x i s t s  

such t h a t  det 

sy stema t i c encoder 6 
l e n t  t o  and causally 

has a non-zero constant term, then a 

can be found w h i c h  i s  r a t iona l ly  equiva- 

dominant t o  G. 1 
N 

If the  above procedure never r e s u l t s  i n  an encoder G 
N 

such t h a t  a K x K submatrix L(D) of S ( D )  can be found w i t h  

det so ,# 0,  then it can be shown t h a t  the  procedure pro- [" 1 
duces a matrix with an al l -zero row a f t e r  a t  most Kml + 1 

applicat ions of s t e p  3, w h e r e  m' i s  t h e  memory of the poly- 

nomial encoder G I .  This follows because each t i m e  s t ep  3 i s  

applied,  the memory of one of t he  K generators must be re- 

duced. I n  th i s  case t h e  o r ig ina l  encoder G has no inverse 

and d = 0,  j = 0 , 1 , 2 , - * .  . 
j 

Consider the R = 2/3  f ixed  binary non-systema- 
1+D 

~ + D + D ~  1+D21 1 * 
t i c  encoder G with G(D)  = 

1 1 11 and rank [%] = 1. After adding row 1 t o  

1 1 1  
% 

-1 N 

row 2 and multiplying row 2 by D , the encoder G w i t h  
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1 

1 
- &(D) = 

A Hence G(D) = 

of generator 

'"I D 

--1 R (D) 

functi  

8 det[g(~)] 

- G(D) = 

.oris f o r  the 

2] i s  t h e  matrix 
1 1+D+D 

A systematic encoder G which i s  

r a t iona l ly  equivalent t o  and causally dominant t o  G. 1 
It should be noted here t h a t  Forney's [ 61 method of pro- 

ducing a "canoni c" non-systematic encoder does not consider 

t he  problem of preserving column distance. 

The  r e s u l t s  of Section II1.A can be summarized by s t a t -  

ing t h a t  there  i s  no loss of general i ty  i n  considering only 

systematic encoders fo r  algebraic feedback decoding tech- 

niques w h e r e  column distance i s  the  important parameter. How- 

ever, i n  many cases a non-systematic polynomial encoder G I  

with encoding memory m' may have a causally dominant, sys- 

tematic, r a t iona l ly  equivalent encoder G w i t h  i n f i n i t e  en- 

coding memory, i . e . ,  G(D) may contain r a t iona l  functions. 

A 

A 

Since it i s  of ten  undesirable t o  have feedback i n  t h e  encoder, 
A A 
G can be converted t o  a systematic polynomial encoder G I  of 

approximately the  same complexity a s  t he  encoder G I  by trun- 

cat ing each generator function i n  G(D) a f t e r  degree m'. 
A A 

Clearly the encoding memory of 8'  i s  m l  and d! = d .  2 d '  , 

j = O,l,Oo., m ' .  

A 

3 3 j 
B u t  t h e  encoder 8 '  i s  no longer r a t iona l ly  

equivalent t o  G I ,  and hence may have a lower value of dFREEe 
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Therefore the  code produced by the systematic encoder G 4 

may not  perform a s  w e l l  w i t h  sequential  decoding a s  the 

code produced by the  non-systematic encoder G’ with the 

same encoding memory. 

B. Syndrome Formation 

The parity-check matrix f o r  a l l  systematic encoders 

was given i n  Chapter I. I n  t h i s  sect ion parity-check 

matrices and syndrome forming c i r c u i t s  w i l l  be given f o r  

a l l  f ixed  non-systematic polynomial encoders G such t h a t  

rank [%] = K. These a r e  then va l id  parity-check m a t r i c e s  

and syndrome forming c i r c u i t s  f o r  a l l  r a t iona l ly  equivalent 

encoders ( c f ,  equations (30) through (36))- That every 

f ixed non-systematic encoder i s  r a t iona l ly  equivalent t o  a 

f ixed non-systematic polynomial encoder G such t h a t  rank 

= K w a s  shown i n  t h e  previous section. 

The parity-check matrix f o r  R = E f ixed non-systematic 1 [%I 
encoders i s  given by 

_. H ~ ( D )  = 

- 
(2’ (D) G1 (3)’ (D) ... G1 (N) (D) 

(D) 0 ... 0 

(D) ... 0 G1 0 

0 0 e.. G 1  (li (D) 
- 

(87) 

The syndrome forming c i r c u i t  f o r  these encoders i s  shown i n  

Figure 3-1. 
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I I 

. . 

. 

. 

. Nt . 
* 

. 
* 

. 

1 
Fig. 3.1. Syndrome forming c i r c u i t  f o r  R = encoders. 
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T However f o r  non-systematic encoders with K 2 2, g (D) 

contains products of generator functions. 

ample an R = 2/3 f ixed non-systematic encoder with 

Consider f o r  ex- 

(If (D) G1 (2’ (D)\ 

( ”  (D} G2 (D) G2 

G1 
G(D) = - 

H ( 2 )  (D) I 

Theref ore  

(D) 

(2 )  (D) H ( 2 )  (D) + G2 (3 )  (D) H(3)  (D) = 0 
G1 

+ G2 (94) 

and 
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Now choose 

Then 

H ( 2 )  (D) = GP (D)G;(3) (D) + G2 (’I (D)G1 ( 3 )  (D) . (97) 

Fina l ly  

+ 

Therefore if E i s  chosen according t o  equation (531 ,  

J (100) 
- 
m = max [ m i l m 2 2  ’ m21m12 mllm23 ’ m21ml 3 ’ “12”23 ml 3m22] 

L - 
where mi = degree l G i ( j )  (D)] f o r  a l l  i and j ,  and the de- 

coding memory, o r  syndrone c i r c u i t  memory, i s  on the order 

of t w i c e  t he  encoding memory. 

The syndrome forming c i r c u i t  for R = 2/3 f ixed non- 

systematic encoders i s  shown i n  Figure 3 . 2 .  
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E' 

I 

I 

2 -  
Fig. 3.2. Syndrome forming c i r c u i t  f o r  R = 7 encoders, 
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- G(D) = 

Then 

T 
s H (D) = 

Consider the encoder described by 

1 1+D i+D+D1] 

4 5  D+D +D 

2 3 4  
l + D  +D +D 

2 
l+D+D 

I n  t h i s  case the encoding memory'm = 3 and, i f  chosen ac- 

cording t o  equation (53), the syndrome c i r c u i t  memory E = 5. 

The syndrome equations from t i m e  u through t i m e  u+5 a r e  then 

given by 

I10010 01 I101 
01 1101 

01 1101 

000 I I I 
0001 I 1  
0001 I I 
0001 I I 

110010 01 1101 0001 1 I 
I10010 01 1101 00011 I 

i l0Olv 01 110 

1 
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By generalizing from the  R = 2/3 case, the  form of t he  

parity-check matrix for a l l  f ixed  non-systematic encoders 

can readi ly  be obtained, L e t  &(D) be the f i r s t  K columns of 

Then denote de t  g ( D )  

Then 
c 1 G ( D ) ,  A s s u m e  rank - 

and t h e  cofactor of G (j' (D) i n  g ( D ]  by Aij.  i 
r- K K K 1 

i=l 
I K  K K 

i = P  
0 

* 

K "  

i=l 

K "  

i=l 
0 
D 0 . 0  

D I . 9  

i=l 
0 
0 

li 
It can eas i ly  be ve r i f i ed  t h a t  equation (102) reduces t o  the 

fami l ia r  form of (D) f o r  R = 2/3 and R = 1/N f ixed  non- T 

systematic encoders and f o r  a l l  f ixed  systematic encoders., 

Mote t h a t  f o r  f ixed  systematic encoders A = 1, T h e  syndrome 

forming c i r c u i t s  f o r  R = 2/N and R = 3/N f ixed non-systema- 

t i c  encoders a r e  given i n  Figures 3-3 and 3.4, respectively.  

Equation (102) has a l s o  been impl ic i t ly  derived by Forney [ 6 ]  

For a f ixed  non-systematic encoder G such t h a t  rank 

= K, the code produced by G i s  exactly the same a s  the 

n u l l  space of a However, a s  discussed i n  Chapter I, i f  T 
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] < K,  t h e  nu l l  space of ET contains other  sequences 

besides the set of output sequences of G. I n  some instances,  

a s  i n  Chapter V I I ,  it i s  convenient t o  define a code w i t h  a 

parity-check matrix- I n  order t o  avoid ambiguity, t he  code 

defined by a parity-check matrix w i l l  be taken t o  be pre- 

c i se ly  t h e  n u l l  space of e 
T 

I n  keeping with standard usage, throughout the  re- 

mainder of t h i s  thesis many of t he  propert ies  precisely de- 

f ined for encoders w i l l  be re fer red  t o  a s  propert ies  of the 

code produced by a given encoder, For example, an R = l/N 

fixed systematic code i s  the  code produced by an R = 1/N 

f ixed systematic encoder. 



IV. Bounds on Distance 

A. Introduction 

A complete set of bounds on the distance propert ies  of 

convolutional codes does not y e t  e x i s t ,  However, many re- 

s u l t s  i n  t h i s  d i rec t ion  have been obtained. Wozencraft and 
1 Reiffen [ 3 ]  proved a G i l b e r t  lower Eound on CIFD f o r  R = - M 

binary f ixed codes which Massey [ 4 1  l a t e r  generalized t o  a l l  

r a t e s  and t o  GF(q) e Robinson 1161 proved an upper bound on 

f o r  f ixed codes t h a t  i s  asymptotically a Plotkin bound, ClFD 
and Massey [8] l a t e r  gave a simple bound t h a t  has the same 

asymptotic form. 

Robinson [ 71 a l so  obtained a lower bound on dDD f o r  

systematic f ixed codes, i n  which dDD grows only a s  the square 

root  of I-+,~. 
fixed codes only, and then Massey [8]  f o r  a l l  r a t e s ,  proved 

a lower bound on cbD i n  which d,,,D grows l inea r ly  with 

Kolor [17] , for R = 1/2 systematic binary 

Wagner [l8] obtained a lower bound on d,,,D f o r  non system- 

a t i c  per iodic  codes w i t h  R < l / Z ,  A new lower bound good f o r  

a l l  r a t e s  w i l l  be given i n  t h i s  chapter, Wagner's results 

w i l l  a l s o  be extended t o  obtain a G i l b e r t  lower bound on 

f o r  a subclass of per iodic  codes with period T = 2m + 1 which 
%D 

does not include f ixed codes a s  a special  case. Since f ixed  

codes a r e  a special  case of the e n t i r e  c l a s s  of periodic codes, 

t he  usual G i l b e r t  lower bound on dFD holds over t he  whole en- 

semble of per iodic  codes, 

63 
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No upper bounds on %D a r e  known except those t h a t  hold 

< d  %D - FDe t r i v i a l l y  s ince  

Since %D 2 dFREE, the usual G i l b e r t  lower bound on 

dFD i s  a l so  a bound on dFREE, a l b e i t  a weak one, 

proved a much stronger lower bound on dpREE f o r  f ixed  non- 

systematic codes, I n  t h i s  chapter a s t i l l  stronger lower 

Neumann [Ill 

bound on dFREE w i l l  be given f o r  non-systematic periodic codes 

and th i s  r e s u l t  w i l l  be used t o  obtain an improved upper bound 

on e r r o r  probabi l i ty  f o r  non-systematic periodic codes used 

over the BSC and with a maximuh likelihood decoding rule.  

McEliece and Rumsey [ l o ]  obtained a Plotkin upper bound 

on $REE f o r  R = - systematic f ixed codes. The  extension of 

th i s  r e s u l t  t o  all r a t e s ,  t o  non-systematic f ixed codes, and 

l 
N 

t o  per iodic  codes w i l l  be given i n  t h i s  chapter, 

F ina l ly  a G i l b e r t  lower bound on dFB f o r  an important 

subclass of R = 1/2 non-systematic f ixed  codes w i l l  be ob- 

tained, T h i s  bound has application i n  the chapter on code con- 

s t ruc t ion ,  

B. Bounds on dFD 
1, Lower Bounds 

A lower bound on distance guarantees t h a t  a t  l e a s t  one 

code can be found w i t h  distance grea te r  than o r  equal t o  the  

lower bound. Wozencraft and Reiffen [ 31 and Massey 141 have 

shown t h a t  there e x i s t s  a t  l e a s t  one binary f ixed code such 

(1031 
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where H(x) = -x l o g  x - (1 - x) log2 (1 - x) i s  t h e  binary 

entropy function, Equation (103) i s  ca l led  a Gilber t  lower 
2 

bound because it i s  asymptotically the same a s  G i l b e r t ' s  lower 

bound on the  m i n i m u m  distance of a block code [19] e 

2, Upper Bounds 

An upper bound on distance guarantees t h a t  no code can 

be found with distance grea te r  than the  upper bound, Robinson 

1161 and Massey [ 81 have shown t h a t  f o r  a l l  binary f ixed  codes 

Equation (104) i s  ca l led  a Plotkin upper bound because it i s  

asymptotically the  same a s  P lo tk in ' s  upper b u n d  on t h e  mini- 

mum distance of a block code [ 201 * An upper bound w h i c h  i s  

asymptotically t h e  same a s  Hamming's [ 2 1 ]  upper bound on the  

minimum distance of a block code i s  ca l led  a Hamming upper 

bound and an upper bound which i s  asymptotically the same a s  

E l i a s ' s  1221 upper bound on the  m i n i m u m  distance of a block 

code i s  ca l led  an E l i a s  upper bound, However no Hamming o r  

El ias  upper bounds a r e  y e t  known on dFD f o r  e i t h e r  per iodic  

o r  f ixed  codes, 

%D C. Bounds on 

1, Fixed Codes 

Generalizing the work of Kolor [17] , Massey [ 8 ] has 

shown t h a t  there e x i s t s  a t  l e a s t  one binary systematic code 

such t h a t  
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Note t h a t  th is  bound guarantees a l i n e a r  increase of c $ , ~  w i t h  

I n  Robinson's [ 71 e a r l i e r  bound, C$,D i s  guaranteed t o  

increase only a s  the square roo t  of nDD. 

T h e  Plotkin upper bound on dFD of equation (104) a l s o  

holds f o r  4>D s ince  d,,D - < d  PD, but  no o ther  upper bounds on 

d,,D a r e  known f o r  

2, Periodic  

For per iodic  

i s ts  a t  l e a s t  one 

f ixed codes, 

Codes 

codes, Wagner 1181 has shown t h a t  there ex- 

code such t h a t  

w h e r e  

d = min min %( [XP] ' [x'G] . )  = 
u,u+iii u , u+E w -  m(u<E+T &#&I 

a r e  j u s t  d i f f e ren t  de f in i t i ons  of d e f i n i t e  decoding minimum 

dis tance and d e f i n i t e  decoding cons t ra in t  length than those 

given i n  Chapter 11, Note t h a t  t h i s  bound i s  only good for  

R I 1/2. A bound which i s  good f o r  a l l  r a t e s  can e a s i l y  be 

derived using Robinsonls and Massey's more na tura l  def ini-  

t i ons  of the de f in i t e  decoding parameters, F i r s t  consider 

only canonic systematic codes w i t h  = m e  

For a canonic systematic code w i t h  period T = m + 1, 

the equations f o r  the pa r i ty  sequence from t i m e  2m through 

t i m e  3m can be wr i t t en  a s  
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= x 9 (m-2) + E3m -3m --o 

where each Q .  (u) , 0 -1 

(16) and (17). 

Theorem 4.1" There 

+ x Q (m) +...+ %+n L&h) -2m-1 
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(107)' 

X Q (m-2) +...+ x Q (m-2) , -3m-1 -1 -2m -m 

5 i, u 5 m, i s  defined a s  i n  equations 

e x i s t s  a t  Peast one systematic per iodic  

time-varying convolutional code such t h a t  

I n  pa r t i cu la r ,  there  ex is t s  a t  l e a s t  one per iodic  w d e  with 

period T = m + 1 such t h a t  

~ D D  - 
n DD 

l i m  
m + *  

Proof For a given d e f i n i t e  decoding codeword x ,..-,x 

Yam, - 'E3m ] =[Em 

a r e  (m + 1) K(N - K) unknowns i n  equation (107) e 

- 0,  equations (107) a r e  l i n e a r l y  independent. Therefore s ince 

I-m 2m-1' 
-2m-1'X2m'B2m' e e 'z3m'E3m ] , there 

2 
For x2, # 

there  a r e  (m li 1) (N - K) equations, each codeword with B~~ # 
rn 

( m + l )  "K (N-K) 
( m + l )  (N-K) solutions,, Final ly ,  s ince T = m + 1, 2 - 0 has y = 

2 
each codeword with some # 0, 2m I U < 2m + T ,  belongs t o  

a t  most (m + 1) y d i f f e ren t  codes. 

The number of codewords with Hamming weight less than 

d 

o r  equal t o  d i s  1 ( ny) I 2nDD (e) when - I 1 /2  
i = O  %D 

[3l  - 
* 
This r e s u l t  was obtained independently by Morrissey I231 e 
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Hence the number of codewrds w i t h  x2m # 0 and w e i g h t  less 

than or  equal t o  d i s  less than 2?DD H(e) Therefore if 

(m t l I y 2 n ~ D  3 (e) i s  less than the t o t a l  number of codes, 

there exists a t  l e a s t  one code w i t h  dDD > d, 

if %D 

1 2  (m+lF K ( N - K ) ,  then there ex i s t s  a t  l e a s t  one code w i t h  

d e f i n i t e  decoding minimum dis tance d,,,,. 

Equivalently, 

dDD 
i s  the smallest  in teger  such t h a t  (m + l.]y2%D (5) 

2 

But 

___l_)t 
2 ( m + U  K(N-K) 2 2  

+ l )  ( N - K )  

+ (m + 1) N] H (  2)2 0 - 
2 

T h i s  bound i s  p lo t t ed  and compared w i t h  the usual G i l b e r t  

lower bound on dFD i n  Figure 4-1, 

Massey [ 8 ]  has  conjectured t h a t  h is  bound on c+,~ f o r  

systematic f ixed  codes should be the same a s  the bound i n  

theorem 4.1, H e  claims t h a t  the f ac to r  of i n  equation (105)’ 

should be eliminated by t ighter arguments, 

1 



69 

. 

.6 

.4 

.2 

Fig. 4 .1 .  Comparison of feedback decoding and d e f i n i t e  
decoding bounds. 
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For non-systematic codes w i t h  decoding memory = m 

and period T = 2m + 1, t h e  equations f o r  the transmitted se- 

quence from t i m e  m through t i m e  3m can be wr i t ten  as  

. 

Theorem 4.2 There e x i s t s  a t  l e a s t  one non-systematic per- 

iod ic  time-varying convolutional code such t h a t  

2 min H (1 - $, 1/2  ~ ~ ' ( 1  - I -l %D 
l i m  

m'Q9 DD 

In  pa r t i cu la r ,  there exists a t  l e a s t  one per iodic  code w i t h  

period T = 2m + I such t h a t  

Yam , Proof For a given d e f i n i t e  decoding codeword &, . e ,  

* J Y3m ] , there a r e  (m + 1) NK unknowns and ( 2 m  + 1 ) N  

equations i n  equations (108)- But x2m # 0 guarantees only 

t h a t  the l a s t  (m + 1 ) N  equations a r e  l i nea r ly  independent. 

[ 
2 

Information blocks + through z2m - could be al l -zero,  

A s s u m e  x i s  the f i r s t  non-zero information block, 
-j 

j = O,l,e.., 2m, I f  j 2 m, then the usual G i l b e r t  lower bound 

on dFD holds f o r  the d e f i n i t e  decoding minimum dis tance,  i .e.,  
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- 
2nFD f o r  m = m implies t h a t  n = (2m + 1 ) ~  2 ( m  + 1 ) ~  = 

l a rge  m. However, i f  j < m, a l l  codewords produced by an 

information sequence containing a span of m consecutive a l l -  

DD 

zero information blocks inclusive between block j and block 

( 2 m  - 1) have Hamming weight a t  l e a s t  a s  grea t  a s  t he  mini-  

- = 0,  i.e., a t  mum weight codeword with .xo = .-. - 
l e a s t  a s  grea t  a s  dFD. 
considered s ince they cannot possibly be the  minimum weight 

codeword with x # 0. Therefore a l l  of equations (108) a r e  

independent, and f o r  each codeword with 32m # Q t he re  a r e  

3 2 m - 1  - 
Hence a l l  such codewords need not  be 

-21n 

NK ( m + l )  ( 2m+l} 
2 

Y =  

solut ions t o  equations (108) e 

Final ly ,  since T = 2m + 1 and the  information d i g i t s  can 
K 

2 -1 
2 

be chosen i n  any of 7 2(3m+11K d i f f e r e n t  

word with some x # 0, 2m I u < 2m+T, belongs =-u 

ways, each code- 

t o  a t  most 

d i f f e ren t  codes. 

Therefore, proceeding a s  i n  t h e  proof of theorem 4.1, 
( 3m-f-1) K if dDD i s  the  smallest  in teger  such t h a t  ( 2 m  + 1) 2 Y 

NK(rn+l )  (2m+l ) ’  
2 % D H ( $ )  2 , then there  exists a t  l e a s t  

one code with d e f i n i t e  decoding m i n i m u m  distance But 

( 2 m  + 1) 2 - ( 2 m + l ) N  H NK ( m + l )  ( 2 m + l j  
Y 2  

( 3m+1) K 

log2 (2m+1)  + (3m+l)K - N ( 2 m + l )  + ( 2 m + l ) N  H 2 0 -  
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log2 ( 2 m + l ]  
+ ( 3m+l) K 

(2m+l]N ( 2 m + l )  N ( 2 m  + 1 ) N  I H  (&)- DD 
L 

H (t)-l 
%D - 
%D 

l i m  
m + m  

Theref o re  

%D - l i m  
m + m  DD 

____)) + 3/2 R 2 0 a s  m - m  

-1 2 H (1 - 3/2 R] 

-1 
2 min [ H  (1 - 3/2 R), 1/2 H-' (1 - R)] 

Note t h a t  th is  bound holds only f o r  R 5 2/3. 

Theorem 4.2 can be extended t o  a l l  r a t e s  by redefining 

Assume %D = (3m + 1)N and T = 3m -t- 1, Then !OD and %De 
= min min wH( y. 1, and a f t e r  a 

3mIu<3m+7: x #Q lu-2m,u+m 
s l i g h t  modification of the proof of theorem 4.2, the following 

corol lary results., 

Corollary 4.1 There exists a t  l e a s t  one non-systematic 

per iodic  time-varying convolutional code such t h a t  

l i m  - %D 2 rnin [ H - I  (1 - 4/3 R ) ,  1/3 H - l  (1 - R)] . I 
m-,m %D 

I n  general ,  l e t  %D = (Xm + 1)N and T = hm + 1, A a pos i t ive  

in teger ,  Then "bD = rnin min I t  

and there exists a t  l e a s t  one non-systematic per iodic  t i m e -  

varying convolutional code such t h a t  l i m  2 min [H-' 

(1 - y- R ) ,  H-' (1-R) ] e Note t h a t  t h i s  reduces t o  

hrnlu<hm+T +#Q W ~ ( [ y l  u+m-h,u+m 

d - DD 
A + l  m + *  %D 

Wagner I s bound when k = 1, t o  theorem 4 , 2  when k = 2, and t o  

coro l la ry  4,1 when h = 3, 
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Note a l so  t h a t  t he  above bound holds f o r  any T 2 kmt-1 

such t h a t  T i s  some algebraic  function of m, i * e e ,  such t h a t  
log,T 

T grows less 

approaches 0 

bounds which 

I-: 

than exponentially with m,  s ince s t i l l  
N (km-l-1) 

a s  m approaches 00 It i s  w e l l  known [ 2 4 ]  t h a t  

use a f r ac t ion  of codes argument i n  t h e  proof, 

such a s  the above bounds, hold f o r  almost a l l  codes. Hence 

l e t t i n g  hR be the  value of 'h which maximizes the  above bound 

f o r  a given R ,  t he  following corol lary r e s u l t s ,  

Corollary 4.2 For almost a l l  non-systematic per iodic  t i m e -  

varying convolutional codes with period T > h m + l  such t h a t  

T grows less than exponentially with m,  
R 

Corollary 4.2 guarantees a l i n e a r  growth of dDD with nDD f o r  

almost a l l  non-systematic per iodic  codes, even though the  

bound i s  very weak f o r  high ra tes .  The two functions which 

comprise the  bound of theorem 4.2 a r e  p lo t t ed  together with 

the usual Gi lber t  lower bound on dFD i n  Figure 4 - 2 ,  

Wagner a l so  proved t h a t  the r e s u l t  of equation (106) 

holds f o r  an e a s i l y  instrumented c l a s s  of systematic codes 

suggested by Massey with period T = 

i f  m i s  even, The R = 1 /2  encoder i n  t h i s  c l a s s  i s  shown i n  

3m+l if m i s  odd o r  3m + 1 

F i g u r e  4-3.  Once each second the  top  s h i f t  r e g i s t e r  s h i f t s  

once while t he  bottom one s h i f t s  t w i c e ,  It can a l s o  be shown 

t h a t  t he re  e x i s t s  a t  l e a s t  one of these codes such t h a t  
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Fig. 4.2. A lower bound on dDD for non-systematic p e r i o d i c  
codes e. 
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. . e . ,  

Fig. 4.3.  An R 
m is 

1 

I 

I 3 m + l  
= - per iod ic  encoder wi th  T = 2 i f  
od8 o r  T = 3 m + l  i f  m i s  even, 

1 
2 

Fig. 4 . 4 .  An R = - per iod- ic  encoder w i t h  T = 2rn4-1. 
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Now a s imi la r  c l a s s  of systematic 

sented f o r  which a Gilber t  lower bound 

These codes do not  include f ixed  codes 

codes w i l l  be pre- 

on dFD i s  proved. 

a s  a special  case and 

hence such a bound i s  in t e re s t ing ,  These codes have period 

T = 2rn + 1 and the  R = 1/2  encoding c i r c u i t  i s  shown i n  

Figure 4.4. Once each second the top shift  r e g i s t e r  s h i f t s  

once w h i l e  the bottom one sh i f t s  t w i c e ,  T h i s  leads t o  the  

following equations f o r  the p a r i t y  vectors: 

. 
= x  Q + x  Q - tee,+ X Q (109) -0 m-1 (m-l’ %-1 m-1 -2m-2 qm-2 -2m-3 

( 2rn) E = x  Q + x  -I-.,,+ X Q 
2m -2m -2m-1 -2m-1 9-2m-2 -m -m-1 ’ 

where each ai, 0 I i 5 2m, i s  a K x (N - K) matrix of elements 

from 0GF ( 2 )  e 

Lema 4.1 For each f ixed  sequence yo’ y1 e e ]= [Z0’ 

EO‘ Xl’ E1‘...‘ # 0, there a r e  

2 ( 2 m + l )  K (N-K) 
Y =  

solut ions t o  the f i r s t  m + l  of equations (log), 
t h  Proof For each codeword [E] with X # 0, the m equa- -0 m 

t i o n  f i x e s  one row of Q .) The  remaining M - 1 rows can be 
-m 
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chosen a r b i t r a r i l y ,  along with a l l  t h e  rows 

-.., Q I n  t h e  (m - l I S t  equation, then, -2m' 
been specified,  The (m - l j S t  equation f ixes  one row of Gm1 
and the others  can be chosen a r b i t r a r i l y ,  Similarly i n  each 

of t he  remaining m - 1 equations, only one row of one matrix 

need be fixed. Therefore a t o t a l  of ( m + l )  (N-K) d i g i t s  a r e  

f ixed by t h e  f i r s t  m + 1 of equations (109). Since there  are 

( 2 m + l )  K (N-K) unknowns, there  a r e  

t ions ,  I 

( 2 m + l ) K  (N-K) 
solu- 2 

(mt-1) (N-K)' 2 

Theorem 4.3 There exists a t  l e a s t  one systematic code of 

the  type shown i n  F i g u r e  4,4 and described by equations (109) 

such t h a t  

Proof Since T = 2m + 1, each codeword y with some 

x # 0, 0 5 u < 2m + 1, can belong t o  a t  most ( 2 m  + 11 y 
-U 

d i f f e r e n t  codes, 

[ I  u,u+m 

Therefore i f  dFD i s  t h e  smallest in teger  

, then ( 2m+l)  K (N-K) 
such t h a t  ( 2 m  + 1) y 2"FDH 

there  exists a t  l e a s t  one code with feedback decoding minimum 

distance 

( 2 m  + 1) 

log2 ( 2 m  

(m + 1 ) N  

H (" n~~ 

1 i m  
m+m 

dFD. But 

( 2 m + l )  K (N-K) - ( m + l )  (N-K) + (m+1) NH ( 2 m + l )  K (N-K) 
2 --+ 

+ 1) + (m + ~ ) N H  - (m + 1) ( N  - 2 0 -  

2 0 -  
log2 ( 2 m + l I  K ( m + l )  

- 1 + N ( m + l )  N ( m + l )  

2 1-R asm-P.00 1 
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Theorem 4.3 guarantees t h a t  simply instrumented codes of the 

type shown i n  Figure 4 - 4  and described by equations (109) can 

be constructed with la rge  

D. Bounds on !FREE 

1. Lower Bounds 

a. Fixed Codes 

Clearly a l l  lower bounds on c$,D a r e  also lower bounds on 

since %D 5 dFREE !FREE 

was given recent ly  by Neumann [Ill f o r  non-systematic codes 

The  only other  lower bound on 

only. H i s  r e s u l t  s t a t e s  t h a t  there  e x i s t s  a t  l e a s t  one binary 

non-systematic f ixed code such tha t  

(2H-l (14) f o r  R 2 0.37 . 
1 d 1 2 R  (1-2 2R-1 

FREE 
L 

(H ( 1-22R'1) +2R-1 f o r  R 2 0 . 3 7 .  

b. Periodic Codes 

A stronger bound than (110) can be obtained f o r  binary 

non-systematic periodic codes, F i r s t  a bound s imilar  t o  pro- 

perty F 4  must be proved f o r  non-systematic per iodic  codes. 

Lemma 4.2 %REE = k f o r  almost a l l  non- 

systematic per iodic  codes with period T 2 X m + l  such t h a t  T 
[ N ( m + l )  -1 ] [ (hR+l) m] 

R 

grows less than exponentially with m ,  w h e r e  XR i s  defined a s  

i n  corol lary 4.2. 

Proof Corollary 4.2 guarantees a l i n e a r  growth of %D w i t h  

> 0 and f o r  a l l  
%D and hence d > 0, T h i s  implies t h a t  

nDD DD 
informatiion sequences x w i t h  x 

transmitted d i g i t s  must contain a t  l e a s t  one 1, A s s u m e  

and SD a r e  defined a s  i n  corol lary 4 - 2 ,  

# 0, t h e  f irst  m + l  blocks of -0 

%D 
A s  i n  t h e  proof of 
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property F4, no information sequences with m o r  more consec- 

u t ive  a l l -zero  blocks need be considered. 

p l i e s  t h a t  t h e  next (k + l ) m  blocks of transmitted d i g i t s  must 

a l so  contain a t  l e a s t  one 1. Therefore since dFREE I N(m+l) 

and a l l  t he  possible  minimum f r e e  weight codewords must  have 

weight a t  l e a s t  N ( m + l )  a f t e r  m + l +  [ N ( m + l )  - l][(;kR+l)m] t rans-  

Hence dDD > 0 i m -  

R 

[ N ( m + l ) i  -11 [ (kR+l)m] - ’ mitted blocks, dFREE = r 

[ N ( m t 1 )  -1 ] [ (hR+l) m ]  +I, the bound on the ‘et ‘max 
length ( i n  blocks of K d i g i t s  each) of information sequence 

needed t o  produce the minimum f r e e  weight codeword. Consider 

the  ensemble of non-systematic per iodic  time-varying codes 

with T = kmaX + m. 

of m,  i .e.,  T grows less than exponentially with m. 

be the set of a l l  information sequences of l e n g t h &  such t h a t  

Clearly T i s  only an algebraic function 

L e t  S t  

- - - - - & # 0,’ %+(-l # 0, 30 - Y l  - 0-• = x 7 - 1  - %& = %&+l 
... = - 0,  for some u,  0 5 u < T ,  and which contain no s t r i n g  

of m o r  more a l l -zero  blocks inclusive between block u and 

block u&-1. Then l e t  F(/e,d) be the f r ac t ion  of codes with a 

codeword of weight d o r  less produced by an information se- 

quence from t h e  set St. - 

Proof For a pa r t i cu la r  information sequence of length 1 be- 

longing t o  sl, the number of d i f f e ren t  ways of choosing a l o w  

weight row of G must be specified,  Clearly, there a r e  

ways of choosing a low weight N ( m + l )  -tuple. 
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Once one row of G has been specif ied a s  having low weight, 

the d i g i t s  of t h e  remaining K - 1  + ( T - l ) K  d i s t i n c t  rows can 

be chosen a rb i t r a r i l y .  Hence a low weight codeword produced 
[ I 

by an information sequence from S can appear i n  a t  most 1 

2 [ K-1+ (T-1) K ]  N ( m t l )  f ( N(y+l)) = 2NKT ( m + l )  -N ( m + l )  
j =O j =O 

K codes. Since there  a re  T ( 2  -1) ways of choosing such an i n -  

formation sequence, F(1,d) i s  a t  most 

T&1) 2 NKT ( m + l )  -N ( m + l )  f ( N ( ~ + l ) )  T ( 2 K - 1 ) l  ( j ) 
d 

N ( m + l )  

j =O j =O 

Lemma 4.4 

F (t, d) 

Proof For 

- 
NKT ( m + l )  2N ( m + l )  2 

j =O 
Amax. - < (N-K)& 2K+Nm f o r  & = 2,3,..., 

a par t icu lar  information sequence of l e n g t h &  be- 
2 2 

longing t o  St, t he  transmitted codeword has a length of m& 

blocks. 

Hence there  a re  ( N(mA’) low weight sequences t h a t  a r e  
j 

j =O 

possible  candidates f o r  low weight codewords. The encoding 

equations f o r  u=O can be w r i t t e n  a s  follows: 

= x G (1) + x G (1) Y l  -1 -0 -0 -1 
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Since no information sequences w i t h  m o r  more consecutive a l l -  

zero blocks a r e  being considered, and T 2 m + &, equations 

(ill), when put  i n t o  matrix form, have rank equal t o  the number 

of equations. Therefore, given a pa r t i cu la r  information se- 

quence from St and l e t t i n g  [ y]  md-l be 

solut ions 2 sequence, there a r e  qN (md, 
TNK (m+l)i  

L 
K(&-2) K 2 

Since there a r e  a t  most 2 ( 2  -1) 

a pa r t i cu la r  low weight 

t o  equations (111). 

d i f f e ren t  information 

sequences i n  Sp, 
E(&-2) K 2 TNK(m+l)  1 ( ~ < m + t ,  

) 
/I/ 

T 2  ( 2  -1) 2 
j =O 

F<&,d) I 

j =O 
5 28 ( N  -K) 2K+Nm . I  

Theorem 4.4 There exists a t  l e a s t  one non-systematic per- 

iod ic  code such t h a t  

d FREE R(1-2R-1) l i m  - > 
m + m  n A H ( l-2R-1) +R-1 
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Proof Note t h a t  no information sequence with a s t r i n g  of m 

o r  more al l -zero blocks can produce the  m i n i m u i i  f r e e  weight 

codeword. Hence i f  
& 
Lmax F(.&,d) < 1 
&=1 

- there  e x i s t s  a t  l e a s t  one code with dlFREE > d. L e t  Fmax - 

max F(/e,d] e Then i f  &- F < 1, there  exists a t  lL.p;I&max max max 

l e a s t  one code with dFREE de Alternatively,  i f  dlFREE i s  

the smallest in teger  such t h a t k m a x  Fmax 2 1, then there  

e x i s t s  a t  l e a s t  one code with f r e e  distance grea te r  than o r  

!FREE* equal t o  

F i r s t  an upper bound on Fmax w i l l  be obtained. Since 

f ( N(yd’) 5 2  (m+L)Q ( Nfm:&) ) 
j =O 

T(2K-  , 

d N<m&) H ( ) 
N (m+@ 2 

2 
Therefore an F ( h 3  I 22K+;; 2.& (N-K) 

can be obtained by maximizing N(m&) H upper bound on Fmax 

( N(m%)) -e (N-K) ]  e L e t  L be t h e  value of % which maximizes 

t h i s  expression, By s e t t i n g  the  der ivat ive of N(rn&] H 

( N ( m > ) )  -?L(N-K)] equal t o  zero and solving f o r  .e, it can be 

shown t h a t  L = 

[ 

i 
- m* Theref o re  d 

N ( 1-2R-1) 

T ( 2K-1) 
Fmax 2X+Nm 

H(1-2R-1) 
2 X-2R-l 

5 e 

- m ( ~ - K ) ’  
N(3.-2R-1) 

2 
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Therefore i f  

d H ( 1-2R-1] 
R - 1  

2 -L OK-1I 2 1-2 m a x  
0 22K + Nm ' 1  J 

- m(N-K) 

N ( 1-2R"1) 
2 

< 1, Hence if dFREE i s  the l e a s t  integer such then 'max Fmax 

t ha t  !FREE 
& T (2K-1)2 2 1-2R-1  

H ( 1 - 2R-1) 
m a x  

e 22K + Nm dFREE (N-K) 2 1  J 

- m(N-K) 

N(1-2R-1) 
2 

then there exists a t  least  one code w i t h  free distance greater 

than  o r  equal t o  %REE. 

Therefore the l e a s t  integer %REE m u s t  be found such t h a t  

K 2  R-1  N(1-2R-1) 

dFREE (N-Kl 
'REE H(1-zR- l )  - 

( M d  )A ( 2  -1) 2 1-2  m a x  m a x  

2 

m ( N-K) 2K+hlm . 2  2 2  

(&-.-gj  FREE - + m(N-K) 2K 
* N ( 1 - 2  R - 1  ) 2 2  

+ 

+ 

d 
FREE 

R-1 1 - 2  

Nm 

H(1-2R-1) 

K (l-Rj %REE 
[ ( m + ~  18 ] +  2 1 0 g 2 ( 2  -1) + ~ ( N - K )  - R-1 

!FREE R - 1  

( 1 - 2  ) m a x  m a x  

H (1-2  ) 2 2K + Nm 
(1-2R-1) 
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!FREE 

[H(1-2R-1) - ( l - R ) ]  2 2K m + N 

2 N  a s m + - m  c- 

2 K a s m 4 m  .__b_ 

a s  m - a  K(1-2R-1) d~~~~ 2 
m H(1-2R'1) + R - 1  

!FREE R ( 1-2R"1) 
2 - 1  

A H(1-2R-1) + R - 1  
1 i m  n m - K l  

T h i s  bound i s  p lo t t ed  i n  Figure 4.5 along w i t h  Neumann's 

bound and the usual G i l b e r t  lower bound on %De 

e s t ing  t o  note t h a t  the bound given i n  theorem 4.4 i s  ex- 

It i s  in t e r -  

a c t l y  the same a s  Neumann's bound f o r  R 5 0.37 w i t h  2R re- 

placed by R. 

2. An U p p e r  Bound on Error  Probabi l i ty  f o r  Maximum 
Likelihood Decoding over a BSC 

Vi te rb i  [ 21 has  given upper and l o w e r  b u n d s  on the re- 

l i a b i l i t y  function, E ( R ) ,  f o r  the best per iodic  code used 

w i t h  maximum l ikel ihood decoding over a BSC, Theorem 4-4  can 

be used t o  obtain a lower bound on E ( R )  , i.e, , an upper bound 

on error probabi l i ty ,  w h i c h  i s  b e t t e r  than V i t e r b i ' s  'bound 

f o r  l o w  r a t e s  and w h i c h  m e e t s  V i t e r b i ' s  up2er bound on E ( R )  

a t  R = 0. 
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I. 

.8 

.6 

.4 

.2 

A = bound of theorem 4.4 = bound of equation (110) 

Fig. 4.5. A comparison of lower bounds on dFREEe 
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Assume  t h a t  t he  length of the  information sequence i s  
K& and l e t  the period of t h e  code be T,  There a r e  then 2 

possible transmitted sequences beginning a t  t i m e  u ,  0 2 u 

< T. Now l abe l  the non-zero codewords beginning a t  each 

t i m e  u from 1 t o  2 
t h  of t h e  i non-zero codeword beginning a t  t i m e  u ,  0 2 u < T. 

K.e, -1 and l e t  w'!(u) be the  Hamming weight 

Gallager [ 2 5 ]  has shown t h a t  t h e  probabi l i ty  of e r r o r  

f o r  an R = k/n block code used with maximum likelihood de- 

coding over a BSC with d i g i t  e r r o r  probabi l i ty  p i s  bounded 

bY 
k 

2 -1 

where p '  = 2 d p ( 1  - pj 
ith non-zero codeword. 

and w; i s  the Hamming weight of t h e  

Hence f o r  periodic convolutional 

codes th i s  bound becomes 
K& 

2 -1 r 

i=l 

I 1  
1 where w; = m i n  wl!(u) I (. Equation (113) can be r e w r i t t e n  a s  

Olu<T 

P < T I  2 j K  ewj logepi (114) 
%-1 

e ? 

j =O 

where w i s  a lower bound on t h e  Hamming weight of a l l  the 

non-zero codewords over t h e i r  l a s t  m + j + l  blocks, Note t h a t  
j 

the  f i rs t  &+m-m-j-1 = &-j-1 blocks of each non-zero codeword 

agree w i t h  t h e  f i r s t  &-j-1 blocks of the transmitted code- 

word, and hence t h e  distance contribution of these blocks is  
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omitted i n  (114) (. 

Since the  best code s a t i s f i e s  any lower bound on mini- 

mum distance,  the weight of t he  l a s t  m + j + l  blocks of each 

non-zero codeword i n  the best  code can be underbounded by 

both the usual G i l b e r t  lower bound on %D (which a l so  ap2l ies  

t o  dFREE since 

lower bound on dFREE given i n  theorem 4,4,  

w = max [ X ' N ( m + l ) ,  h N ( j + m + l ) ]  , 

) and f o r  la rge  enough T by t h e  %D ' !FREE 

Hence 

(115)' 
j 

d 

N (m+l )  
%REE R ( 1-2R"1) FREE -1 

= H ( 1 - R ) .  where X' = = and X = 
H ( l - Z R - l )  +R-1 

L e t  j, be the value of j a t  which k '  N ( m + l )  = k N ( j + m + l ) .  

Then f o r  j < j h' N ( m + l )  i s  the dominant term i n  (115) and 0' 
f o r  j 2 j,, 

i 

Theorem 4.5 

hN(j+m+l) i s  the  dominant term i n  (115). L e t  

For maximum likelihood decoding over a BSC, 

1 [ -QR-P log pi 
P < e-% e 

f o r  t he  best  periodic code with large enough T ,  i f  K 10ge2 + 
k l N  logep' 

Q+l 

e l i m  
m-00 

( 0 ,  

Proof 
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1 

I .  

X'nA 

0 
i(NRt + logeP' 1 e j +m+l 

lim Pe < eBnA 
m-* 

e Q +1 

(-QR' - hilogepi) 

i(Kloge2 + - X'N logepl) 

L-jo-l + c  
i=O 

00 

= l + C  
i=l 

Hence 
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h ' N  'OgeP') + 1 
00 

i ( K  log 2 + a+l 
e h ' N  

1-e Q+l 
e 

(K 10ge2 + - logep')  c 
i =O 

by the  geometric series argument. Therefore 

I =  -n (-Q R '  - h' log  p ' )  1 
h ' N  

1-e Q+l 

e 2 +  l i m  P < e A 
(K 10ge2 + - logepl)  m-00 e 

= B, a pos i t ive  constant 
1 
x ' N  [ 1-e e Q+l 

L e t  2 + 
(K log 2 + - logep')  

h' depending only on R and p (Q = X - 1 f o r  large m),where 

3 5 B < 00 . Then 
log  B 

A 

e - Q R ' -  X' 10gep') 
l i m  

m-00 
Pe < e"nA ( - -  n D- 

-n .( - Q R '  - h' log  p ' )  
l i m  P e < e  A e - 1  

m-00 

Corollary 4.3 For m a x i m u m  l ikel ihood decoding over a BSC, 

l i m  E ( R )  > -Q R '  - h '  logep' 
m+CO 

i f  h ' N  log p '  e < 0, where E(R)  = - - 1 loge i s  
nA Q+l K log 2 + e 

the r e l i a b i l i t y  function f o r  t he  best  periodic code with 

large enough T. I h' N log  P I  
e 

= 0 .  Q+l 
L e t  Ro be the  value of R such t h a t  K log 2 + e 

Figures 4.6, 4.7, and 4.8 compare the  bound of corol lary 4.3 

with V i t e r b i ' s  upper and lower bound on E(R)  fo r  a l l  R < Ro, 
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A = bound of c o r o l l a r y  4 ,3 .  

Fig. 4.6 A comparison of the bound of c o r o l l a r y  4 , 3  w i t h  
Viterbi's upper bound (W) and ViterbiOs lower 
bound (VL) f o r  p = 0.01. 
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A = bound of corollary 4 . 3 *  

Fig. 4.7. A comparison of the bound of corollary 4.3 with 
Viterbits upper bound (VU) and Viterbi's lower 
bound (VL) for p = 0,lO. 
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.5: 

.4 

.3 

.2 

1 

0 

0 

A = bound of corollary 4 ,3*  

Fig. 4.8. A comparison of the bound of corollary 4.3 with 
Viterbi's upper bound (VU) and Viterbi's lower 
bound (VL) for p = 0.40. 
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with p = 0.01, 0.10, and 0.40, respectively,  In  each of 

R E (R) 
these f igures  i s  p lo t ted  against  7 , where C = l+p  log2 

p + (1-p) log2 (1-p) = 1 + H(p) i s  the capacity of a BSC. 

Table 4.1 gives values of Rot  C ,  and 

and 0.40. 

f o r  p = 0.01, 0.10, !h 

It i s  easy t o  see from Figures 4.6 and 4.7 t h a t  the  

bound of corol lary 4.3 i s  superior t o  Vi te rb i '  s lower bound 

on E(R)  f o r  low r a t e s  and f o r  low values of p. For higher 

values of p, near p = 0.50, V i t e r b i ' s  lower bound on E(R)  

coincides with h i s  upper bound on E(R)  , and hence no improve- 

ment i s  possible,  as  can be seen from F igure  4.8. Note a l so  

tha t  t h e  bound of corol lary 4-3 meets V i t e r b i ' s  upper bound 

on E(R)  a t  R = 0. This can be shown analyt ical ly  a s  follows. 

L e t  E (R) be V i t e r b i ' s  upper bound on E(R)  and l e t  E (R) 
U L 

be the  lower bound on E ( R )  of corol lary 4.3. Then 

E (R) 
U 

- - 
R=O I 
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TABLE 4.1 

p = 0.01 p = 0.10 p = 0.40 

RO 

C 

0 
R 

C 
- 

.37 b i t s  -19 b i t s  .013 bi ts  

.92 b i t s  .) 53 b i t s  .03 b i t s  

.40 .35 .45 
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Applying L 'Hospi ta l ' s  r u l e ,  

E (Rr  lR=O = -  
U 

Theref ore  EU ( 0 )  = EL (0) . 
3. Upper Bounds 

1 McEliece and Rumsey [l8] have shown t h a t  f o r  R = E 
systematic binary f ixed codes 

1 d log n 
FREE 1 -R 2 E  
nA <T 2 (m+l) +T + 

E n 
> N ,  where n = (N-1) ( m + l )  i s  the  number of if l+log2nE E 

pa r i ty  d i g i t s  i n  one cons t ra in t  length of transmitted d i g i t s .  

It can eas i ly  be shown t h a t  l+log2nE > N f o r  some f i n i t e  value 

dif m. For instance,  i f  R = 1/2, (125)  holds f o r  a l l  m 2 8, 

nE 

Hence 
d 

FREE I -R 
< -  2 l i m  

m - 0 0  nA 
(126) 

1 f o r  a l l  R = systematic binary f ixed  codes, It can be shown 

t h a t  t h i s  r e s u l t  extends t o  systematic binary f ixed codes of 

a l l  r a t e s .  Equation (125)  then becomes 
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logznE 
+ 2K (m+l) 

dFREE 1-R + < -  n 2 A 

E 1 

2 E  

n 
> E  where % = (N-K) (m+l) = nA(l-R). if K + log n 

Again equation (126) results in the limit as m 4 - W  

In order to extend this result to non-systematic binary 

fixed codes, it is convenient to make the following defini- 

tions. 

for those fixed codes whose matrix of generator functions 

- G (D) contains only polynomial elements. 1 
M .  is called the constraint span Of the j th encoded sequence. 

3 
Note that m = max 

Definition 4.2 % =I Mj + N is the number of transmitted 
j =1 

digits that can be affected by a non-zero information block 

j = I,..., N.1 for fixed codes with constraint spans M 
j 

This definition of % is slightly different from the defini- 
tion given by McEliece and Rumsey. 

Theorem 4.6 For any fixed convolutional code, 

1 2 -  1 1 nE + log2 % + 2 if - E n 

!FREE < 2 K + log2 nE R e  

Proof Consider a l l  information sequences of length h. The 

average weight of a codeword is 
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N 
N h + C  M L j  

j =1 

2 

S ince  i s  less than o r  equal t o  the  average weight of 

a l l  non-zero codewords, 
N 

N N 

Nh nE-N < 2Kh Nh 
Choose h such t h a t  + 7 -1, Then dFREE - < 2  
+ -  nE-"N 1 + -  

2 "  2 

Now a more exp l i c i t  way of choosing h w i l l  be derived. 
Kh 

< 2  Then 
K (h.-l> 

< nE Suppose h is  chosen such t h a t  2 

nE-N Nh 2Kh-N 
~ + - z I - I T +  2 2 

E 1 n 
> -. since Kh-K < log 

R 2 
> > -  I f  then - 
,Kh 

2Kh E n 

x+log n R ' Kh K+log2nE 2 E  
This implies t ha t  h < Therefore E -  N n 

1 
1 since N 2 2 except f o r  the  t r i v i a l  R = - = 1 codes., 

nE 1 Consequently, f o r  > FQ, i f  h i s  chosen such 
K+log n 

2 E  
< nE < zKh, it i s  a l so  chosen such t h a t  K(h-1) t h a t  2 

n -N E 
2 2 + -  < 2Kh-le 

Nh 
I_ 

K+log211E 

K 
Final ly ,  since h < 8 
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n 

l i m  
m - ~  

Proof The l a s t  two f ac to r s  i n  theorem 4.6 become neglig- 
n 11 

a s  m-w A l s o ,  it can be shown 
2 

ible compared w i t h  

t h a t  

1 f o r  a l l  R a s  m-00 - 1  nE > -  
K + log2nE R 

Note t h a t  theorem 4 - 6  and corol lary 4.4 a r e  completely 

general, i.e., they apply t o  both systematic and non-systema- 

t i c  binary f ixed codes of a l l  ra tes .  I n  the  Systematic case, 

these bounds a r e  exactly t h e  same a s  t h e  bounds of (125)  and 

(126) except f o r  the s l i g h t l y  d i f f e ren t  

Note t h a t  f o r  systematic codes, MI = M2 

Hence corol lary 4.4 ind ica tes  t h a t  more 

avai lable  f o r  non-systematic codes than 

def in i t ion  of nEe 

... = % = 0. - - 

f r e e  distance may be 

f o r  systematic codes 

of t h e  same memory. The bound of corol lary 4 , 4  f o r  non-system- 

a t i c  codes i s  shown together with the  bound of equation (126) 

f o r  systematic codes i n  Figure 4.9, 

For periodic codes, t he  constraint  spans M must be re- 
j 

defined a s  

M = max max { il the  jth column of & ( u )  # C)} 
j o < ~ < T  o < i < m  

[ M ~ ]  e lljlN 

(129) 

Again m = max 

proofs, theorem 4 - 6  and corollary 4 - 4  can be shown t o  hold 

Then by a s l i g h t  modification of the 

f o r  per iodic  codes. 
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= systematic bound = non-systematic bound 

Fig. 4.9. A comparison of' upper bounds on dFREE f o r  
systematic and non-systematic coaes, 
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Figure 4 , l O  sums up the r e s u l t s  of Section IV,C.  by 

p lo t t i ng  together the usual G i l b e r t  lower bound on sD, and 

the bounds of equation (110) , theorem 4.4,  equation (126) , 

and corol lary 4.4, N o t e  t h a t  the lower bounds on d of FREE 
equation (110) and theorem 4.4 for non-systematic codes 

cross the upper bound on d of equation (126)’ f o r  systema- FREE 
t i c  codes. T h i s  f a c t  guarantees t h a t  more f r e e  dis tance i s  

ava i lab le  w i t h  non-systematic codes than w i t h  systematic 

codes. 

Eramide 4.1 For R = 1 1 2 ,  m = 3 ,  the best f ixed systematic 

code, v iz .  the code w i t h  G ( l )  (D) = 1, G ( 2 )  (D) = 1 + D + D , 3 

ha s 

Now 

and 

ha s 

For this  code M1 = 0, M2 = 3, and n = 5, 
%REE = 4* E 
consider the R = 1/2  non-systematic f ixed  code w i t h  m = 3 

G T h i s  code (1) 3 (2)’ 3 (D) = 1 + D + D I G (D) = 1 + D2 + D e 

= 6, M1 = 3 ,  M 2  = 3 ,  and nE = 8, Hence f o r  m = 3 ,  
%REE 

non-systematic codes a r e  c l ea r ly  superior t o  systematic 

codes. I 
Examgle 4.2 I n  th i s  example a f ixed  code which m e e t s  the 

bound of theorem 4-6 w i l l  be presented, For R = 1/2,  m = 4, 
2 3 + D l e t  G ( l ’  (D) = 1 + D + D2 + D4, G(2)’  (D) = 1 + D + 

2 Then - E 10 n 
- - 

1 + log2 10 n = M .  + 2 = 10 and + log2 nE 
E J 

j =1 

4 
D e  

1 
R > - = 2 ,  

El I so the bound i s  va l id  and y i e lds  dFREE < 

+ 1 /2  = 5 + log2 10 + 1/2 = 8-8, which i m p l i e s  t h a t  

It can eas i ly  be shown that  %REE = 8 f o r  the above code,\ 

+ 5 log2 nE 

5 8 .  
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= bound of theorem 4,4 = bound of equation (110) 

~ ~ ~ O ( p p 0 0  =bound of equation (126) B I o  o I I . ~  ~~ = bound of corollary 4.4 
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The f a c t  t h a t  non-systematic codes can produce more 

f r e e  distance than systematic codes is  important when se- 

quential  decoding i s  being used. Recall t h a t  

more appropriate distance measure €or sequential  decoding 
!FREE is a 

than %D o r  %D. 

a lower probabi l i ty  of decoding e r ro r  f o r  t h e  best  non-system- 

a t i c  code of a given memory than f o r  the best systematic 

code of the  same memory. 

theore t ica l  r e s u l t s  which indicate  the poss ib i l i t y  of 

Hence a sequential decoder should exhibi t  

Hsppily, Bucher [ 2 6 ]  has obtained 

achieving lower e r r o r  p robab i l i t i e s  w i t h  non-systematic 

codes than with systematic codes. Experimental ve r i f i ca t ion  

of t h i s  f a c t  i s  given i n  Chapter V I ,  

E ,  A G i l b e r t  Lower Bound f o r  an Easily Instrumented Sub- 

c l a s s  of R = 1/2 Non-Systematic Codes 

The usual Gi lber t  lower bound argument s t a t e s  t h a t  there  

2 d i f  d i s  the l e a s t  
%D 

must exist a t  l e a s t  one code with 

in teger  such t h a t  

no. of codewords with no, of codes which can 
generate a pa r t i cu la r  2 

# 0 of weight j codeword of weight j 

t o t a l  no. 

of codes (130) 

Consider t h e  c l a s s  of R = k/2 f ixed  non-systematic codes 

with G ( 2) (D) = D + G ( ” ( D )  and go (1) ( 2) = 1, For any = 90 

information sequence and any G “ )  (D) with go = 1, each 
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codeword y always has exactly one 1 i n  -yle 

of f i r s t  constraint  length code d i g i t s  which can be chosen 

independently i s  n -1 = 2 m + l ,  

Hence the  number 

A 
For any information sequence ,x- whose transform i s  x ( Q ,  

the sum of the  transforms of t h e  two transmitted sequences 

i s  given by 

x(D) G(' )  (D) + x(D} [ D + G ( l )  (D)] = y(''(D] + y ( 2 )  (D] . 

Hence 

and 
, j = O,l,--* (133) (1) ( 2) 

xj = Y j + l  + Y j + l  
Therefore a pa r t i cu la r  choice of [E ] and xm 

can be chosen a r b i t r a r i l y ,  Also, f o r  any pa r t i cu la r  choice 

f i x e s  [ z ]  
m m - 1  

of [ X I  and [y] , t he  matrix of generator functions G(D) = 
m m 

[ G ( l )  (D) D + G( ' )  (D) ] i s  fixed, Hence only two codes can 

produce any specif ied choice of [y] e Note a l so  t h a t  there  

a re  2m possible choices f o r  G") (D) and therefore  2 
m m 

possible 

codes. Equation (130) then reduces t o  

B u t  

o r  

l1 ( y )  x 2 2 2  m 0 

j =O 

1 i m  I'I (E=-)>: d 1 

m-30 
This proves the  following r e s u l t ,  

(134) 
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Theorem 4.7 For R = 1/2 non-systematic fixed codes with 

G(2 ’  (D) = D f (D), there exists at least one code such 

that 

2 € J 1 O m [  
%D - lim 

m-00 A 

Note that theorem 4,7 is exactly the same as the 

Gilbert lower bound on dFD for R = 1/2, Therefore it is guar- 

anteed that this class contains good codes. Since non-system- 

atic codes are better for sequential decoding than systematic 

codes, codes of this type should perform very well, Another 

property of these codes is that they can be simply instru- 

mented and that they possess the principal advantage of 

systematic codesl the so-called i t  quick looki1 capability. The 

instrumentation and “quick look” capability of these codes 

will be explained in detail along with their construction, 

simulation, and performance in Chapter VI. 



V. Some Results on Free Distance 

A, Bounding the Length of the Information Sequence Which 

Produces the Shor tes t  Minimum Free Weight Codeword 

Property F4 of f r e e  distance i m p l i e s  t h a t  a f i n i t e  num- 

ber of blocks of information d i g i t s  a r e  needed t o  produce the 

minimum f r e e  weight codeword f o r  non-systematic f ixed  codes, 

And Lemma 4 - 2  shows t h a t  a f i n i t e  number of blocks a r e  needed 

f o r  non-systematic per iodic  codes, 

For the spec ia l  case of R = 1/2 non-systematic f ixed  

codes with G ( l t  (D) and G ( 2 )  (D) r e l a t ive ly  p r i m e  pdynomia1.s 

an improved bound on the length of information sequence needed 

t o  produce the minimum f r e e  weight codeword can be obtained. 

Since G (D) and G ( 2 ) ( D )  a r e  r e l a t ive ly  p r i m e ,  there exist 

polynomials A(D) and B(D) of degree less than m such t h a t  A 

(D) G ( 1 2  (D) + B(D) G ( 2 )  (D) = 1 [27]  e 

t i on  sequence x whose transform i s  x ( D ] ,  

(1) 

Hence f o r  any informa- 

x ( D )  A(D) G(’) (D) + x(D)  B(D) d2) (D) = x ( D )  G(’) (D) + 

= x ( D )  e (138) 

Since an information sequence capable of producing the 

minimum f r e e  weight codeword cannot have any span of m con- 

secut ive zeros, the minimum f r e e  weight codeword cannot have 

any span of 2m-1 consecutive a l l -zero  blocks, Therefore a t  

l e a s t  one 1 must be produced i n  every 2m-1 encoded blocks, 

105 
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But every R = 1/2  non-systematic f ixed code has dFREE a t  

most 2 ( m + l )  , and 2 ( m + l )  1's must be produced i n  the  m i n i m u m  

f r e e  weight codeword within ( 2 m + l )  (2m-1)  +1 blocks. Hence 

= r  2 d~~~~ 4m -m-1 e 

Note t h a t  t h e  b x n d  of equation (1391 i s  derived i n  a 

s imilar  fashion t o  the  bound of property F4 since the matrix 

A (Dl 
i s  a zero-delay feedforward inverse f o r  -1 

G (Dl = [ B ( D , l  

- G(D)  whose polynomial elements have maximum degree M = m-1. 

A s imilar  argument can be used t o  derive t h e  following bound 

fo r  f ixed  systematic codes of a l l  ra tes :  

These bounds appear t o  be very weak s ince i n  prac t ice  

the  minimum f r e e  weight codeword i s  almost always produced 

by the  f i r s t  m + l  blocks of information d i g i t s ,  This remains an 

important problem since a t i g h t  bound would grea t ly  simplify 

the  calculat ion of d The d i f f i c u l t y  i n  proving a t i g h t  

bound s t e m s  from our lack of knowledge about the  weights of 
FREE* 

products of polynomials, However, f o r  some special  cases, 

t i g h t e r  bounds can be obtained, 

reverse feedback decoding m i n i m u m  distance and i f  

For instance,  i f  %D i s  the 

f o r  any i, then 

%REE = 2m 
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T h i s  follows from the  f a c t  t h a t  any information sequence with 

some x f s, i > 2m, produces a codeword w i t h  weight a t  l e a s t  

dFD over the f i r s t  m + l  t ransmitted blocks and weight a t  l e a s t  

sD over the  l a s t  m + l  t ransmitted blocks, 

y ie lds  (1411 ,, I f  t h e  code i s  reversible ,  then (141) holds i f  

-i 

Theorem 2.4 then 

2 d ~ ~  > r .  f o r  any i, 
1 

Also, f o r  almost a l l  f ixed  and per iodic  systematic codes, 

Lemma 4 , 2  can be modified a s  follows: 

- (142) dFREE - r(31) m ' 
where I i s  the l e a s t  integer  such t h a t  ri < sD + I%D f o r  

any i, dDD s a t i s f i e s  equation (105) with equal i ty  i n  t h e  

fixed case and s a t i s f i e s  theorem 4 - 1  w i t h  eq-ilality i n  t h e  

per iodic  case, and %D s a t i s f i e s  equation (103) with equal- 

i t y .  

A s  noted e a r l i e r ,  Neumann [ll] has suggested t h a t  the 

correct  bound on the  length of information sequence needed 

t o  produce the  m i n i m u m  f r e e  weight codeword i s  m + l  blocks, 

i .e. , 

example disproves t h i s  con j ecture. 

Unfortunately, the following counter- 
%REE = * m 

2 4 5 11 Example 5.1 L e t  G( ' )  (D) = 1 + D + D + D + Dr, + DIO + D 
( 21 2 3 4 9 and G (D) = 1 + D + D + D + D8 + D fo r  an R = 1 / 2  non- 

2 5 
systematic f ixed  code with m = 11, For x(D) = 1 + D + D + 
8 9 11 ( 1) 23 l2 (')'(D) = x(D) G (DJ = 1 + D D + D  + D l O + D  + D  , y  

and y (D) = x(D) G (D) = 1 + D3 + D + D + D8 + D + DIO + ( 2) ( 2) 6 7 9 

2 1  
D and the weight of t h i s  codeword i s  10. B u t  f o r  any x(D) 

such t h a t  x0 # 0 and degree [x(D)] I 11 = m, the weight of 
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Hence %REE the  codeword produced by x ( D )  i s  a t  l e a s t  11. 

# rm*l 
-.. 

Note t h a t  G ( l )  (D) and G(2 '  (D) i n  example 5,1 a r e  r e l a t i v e l y  

prime, so the Conjecture does not  hold even when t h e  gener- 

a t o r  functions a r e  r e l a t i v e l y  prime polynomials, 

The  same conjecture has a l so  been made f o r  systematic 

codes only. However consider t h e  following counterexample. 

L e t  d 1 )  (D) = 1, G ( 2 )  (D) = d3) (D) = 1 + D + 
2 4 6 8 , D + D + D + D7 + D f o r  an R = 1/3 f ixed systematic code 

8 with m=8. For x ( D )  = 1 + D + D3 + D6 + I) + D9, y ( l )  (D) = 

x(D) G ( l )  (D) = 1 + D + D3 + D 6 + D8 + D I y(2 )  (D) = y(3) (D) = 

x ( D )  G ( ~ ) ( D )  = x ( D )  G ( 3 ) ( D )  = 1 + D17,  and the  weight of t h i s  

codeword i s  10. 

[x(D)] 5 8 = m, t h e  weight of t h e  codeword produced by x ( D )  

But f o r  any x(D) such t h a t  xo # 0 and degree 

i s  a t  l e a s t  11. Hence dFREE # rm4 
It i s  in t e re s t ing  t o  note,  however, t h a t  no counter- 

examples t o  t h i s  conjecture have y e t  been found f o r  R = 1/2 

systematic codes, The author has been able  t o  f i n d  some 

codes f o r  which an information sequence with degree grea te r  

than m produces a codeword with weight equal t o  rm, but none 

with weight less than rm, 

t h a t  very long codes a r e  needed t o  provide counterexamples, 

The d i f f i c u l t y  may l i e  i n  the  f a c t  

and dis tances  a r e  very d i f f i c u l t  t o  ca lcu la te  f o r  long codes. 

Also, no counterexamples have been found f o r  systematic codes 

of r a t e  other than 1 / 2  whose generator functions a r e  r e l a t ive -  

l y  prime polynomials, 
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The d i f f i c u l t y  i n  f inding counterexamples t o  this  con- 

j ec tu re  leads one t o  believe t h a t  t he  t r u e  bound i s  very 

close t o  rm, perhaps r2m, a t  l e a s t  f o r  codes whose generator 

functions a r e  r e l a t i v e l y  prime polynomials. Hence it i s  

a l so  l i ke ly  t h a t  rm i s  always very close t o  t h e  ac tua l  free 

d i  stance- 

B, Calculating dFREE 
Unfortunately, there can be no simple, general method 

of calculat ing dFREE u n t i l  a t i g h t  bound i s  obtained on t h e  

length of information sequence needed t o  produce t h e  minimum 

free weight codeword, 

by computing t h e  minimum row distance over the  bounded 

Then dFREE can be calculated simply 

length of information sequence, However there a r e  many 

t r i c k s  which can be used t o  f i n d  o r  t o  closely approximate 

Since di I sREE 5 ri f o r  a l l  i, di and ri can be 

successively computed, If a t  some point  j ,  dj  = r then Y 
j e  

dFREE = d .  = r 
J 

Property F4 showed t h a t  %REE = d = r 
j j -m 

f o r  some f i n i t e  j i f  the encoder has a feedforward inverse. 

Sometimes the f r e e  distance of the reverse code, i -e . ,  

the  code whose generator matrix i s  described i n  de f in i t i on  

2.15, i s  known. I f  so, t he  free distance of the  o r ig ina l  

code i s  the same a s  t h a t  of the reverse code. T h i s  follows 

from the f a c t  t h a t  each codeword i n  the reverse code i s  the 

reciprocal  of t h e  codeword i n  the o r ig ina l  code produced by 

the  reciprocal information sequence, w h e r e  the reciprocal  
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] i s  taken t o  be c of the  sequence z =[go, z1 , z2, e 

Z2' 21' 

ciprocal a r e  the  same, t he  set of codeword weights of a 
] -0 

Since  the  weight of a sequence and i t s  re- 

code and i t s  reverse code a r e  the same, Note t h a t  t h i s  i s  

t r u e  only f o r  dFREE, and not f o r  dFD o r  %Do 

can be found by %REE 
Very good approximations t o  

computing r For i n -  

stance, a computer program has been w r i t t e n  f o r  use  on the  

o r  di fo r  a s  l a rge  an i a s  feasible .  
i 

Univac 1107 computer a t  the  University Computer Center which 

calculates  d61 f o r  R = 1/2 f ixed  codes i n  j u s t  a few minutes. 

This usually provides a very good approximation t o  

codes w i t h  encoding memory less than about 50. 

lower bound on %REE and a reasonable upper bound i s  usual- 

ly known from the  weight of t he  generator or  some short  low 

weight codeword, 

'!FREE for 
dG1 i s  a 

Hence d61 i s  of ten known t o  be exactly 

and i f  not it i s  easy t o  make a close approximation. !FREE 

The values of and bounds on dFREE given i n  Appendix A w e r e  

a r r ived  a t  i n  t h i s  manner, However, f o r  other  r a t e s  and 

longer codes, good approximations t o  dFREE become harder t o  

make e 

Consider t h e  m = 7 1 ,  R = 1 /2  f ixed systematic 

g71 , 1 / - - o ,  
( 21 code whose generator sequence 

] is  represented th ree  d i g i t s  a t  a t i m e  
'7 1 

a s  [651, 102 ,  104,  
0' 

i n  o c t a l  notation, s t a r t i n g  with g 

1 2 1 ,  022, 041, 101, 1011 e This code i s  known t o  have 

21, Bu t  since t h e  weight of the  generator i s  only 21, 

- < 21, Therefore 

- 
%D - 

!FREE 
= 21,  This code is  one which - 

%REE - 'm 
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will be constructed in Chapter VI, 1 
Consider the following m = 35, R = 1/2 fixed 

systematic code with 
1 

3171 This code has dSl = 18, 

transform is (1+D) G(D) has weight 18. 

This code was Constructed by Forney [28] and'is presently 

being used by NASA in its Pioneer satellite series.1 

But the codeword whose 

Therefore dFREE = 18. 

T3e m = 35, R = 1/2 fixed systematic code with 

g35] = [ 553, 134, 307, 713 has dSl = 19. Since 1 
the generator has weight 22, 19 5 c$REE - < 22. 

due to Lin and Lyne [29]  e 1 
This code is 



V I .  Constructing Good Convolutional Codes 

A. The Minimum Weight Construction Algorithms 

I n  t h i s  chapter various algorithms f o r  constructing 

1 
R = E f ixed binary convolutional codes w i l l  be given. 

constructing good codes it i s  desirable  t h a t  t h e  complexity 

I n  

of t h e  encoder be kept a s  small a s  possible. For example, 

i f  a code is  being used t o  communicate information from a 

space vehicle t o  ea r th ,  t he  encoder i s  a hardware device on 

the space vehicle  i t s e l f ,  The usual encoding c i r c u i t  f o r  an 

R = i ; ~  canonic systematic f ixed binary convolutional code i s  

shown i n  Figure 6.1, Note t h a t  the number of two-input 

1 

modulo-two adders required t o  implement t h i s  encoder i s  ex- 

ac t ly  wH(9) - N ,  where g i s  the  generator. 

ing w (9) f o r  a given distance and constraint  length mini- 

mizes the  number of modulo-two adders i n  the  encoder rea l iza-  

t ion.  A l l  the codes presented i n  Section V I - A  w i l l  exhibi t  

Therefore minimiz- 

H 

t h i s  property, i.e., f o r  a given distance and constraint  

length, w (g] w i l l  have i t s  minimum possible value. A s  i n  

Chapter 11, 

entries i n  g ,  

H 
w i l l  be used t o  denote the f i r s t  ( j  + 1 ) N  ['I j 

1, An Algorithm f o r  Finding Good R = 1/2 Convolutional 
Code s 

I n  t h i s  section, a simple algorithm w i l l  be given which 

w i l l  be shown t o  produce good R = 1/2 canonic systematic 

f ixed binary convolutional codes f o r  a l l  m < 71, F i r s t  a 

statement of the algorithm i s  given and 

e s t ing  propert ies  of t h e  codes produced 

then several  i n t e r -  

a r e  shown. (For 

1 1 2  
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. . .  

. 

. . .  

... Y@Y2) 1 0  

... 

= mult ipl icat ion i n  GF(2) by gi ( 3  1 e 

1 
Fig. 6.1. An R = canonic systematic fixed encoder. 
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( 2) = Sj.) j l  
convenience, l e t  g 

Alsorithm A1 

(0) 

(1) S e t  g j  = 1. 

Set go = 1, do = 2,  and j = 1. 

(2)  Compute d I f  d .  > djel, go t o  (4). 
j e  J 

(3) S e t  g j  = 0. 

(4 )  I f  j = m, stop, Otherwise, set j = j+l  

and go t o  (1). 

Proof 

tance. 

manently set t o  1, i.e., wH( [g] .) i s  increased by one, i f  

and only if d .  > dj 1, wH( [ g ]  .) 5 dj. 

w ( [ g ]  H 
However, since w (G ) = do 

J 

) 2 d .  by property C3 of the  column dis-  
J j 

= 2 and since g i s  per- 
j H O  

Therefore W ( [SI] ) = 
j H J 

s J 
di .  I 

Since propert ies  C 1  and C3 of t h e  column distance require  

t h a t  wH( g 1 = wH( [g] 1 2, d = d , property Al-1 en- m FD m 
su res  t h a t  w (. gj i s  minimal and hence the  r e su l t an t  code 

requires  the m i n i m u m  number of modulo-two adders i n  i ts  en- 
H .  

coding c i r cu i t .  

Propertv A1-2 

Proof A s s u m e  g = 1, j 2 1 [note t h a t  algorithm A1 sets 

I f  g j  = 1, then gj+l = 0, f o r  every j # 0. 

j 
= 1. The information sequence 

Then set 'j+l 
go = g1 = 1); (. 

There- 
j "  0,1,0] always produces a codeword with dj+l = d  

fore  algorithm A 1  w i l l  set gj+l = 0-1 
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Property A l - 2  allows us automatically t o  add a 0 t o  [g] 

a f t e r  adding each 1 beyond go" 

reduce t h e  number of t i m e s  s teps  1 and 2 must be applied t o  

j 
This permits a shortcut t o  

reach a given length code. 

L e t  g be the  generator obtained by using 

algorithm A l .  L e t  g' # g be the generator of any other  

R = 1/2 canonic systematic f ixed code of the  same length 

such t h a t  wH( [ g ' ]  

each 1 i n  t h e  generator increases the column distance by one. 

) = d ' ,  j = O t l i e e e t  m, i o e r ,  such t h a t  
j j 

-- Proof A s s u m e  the f i r s t  point a t  which t h e  two generators 

Then d'. = j 0  = O 8  g4 0 = la 
J O  

, O l j  5 m , h a s g  
j 0  0 disagree, 

+ 1 > d e But t h i s  i s  impossible, since i f  t h e  column 

distance can increase a t  jo algorithm A1 would make g = 1, 

Therefore, the f i r s t  p i n t  a t  which t h e  two generators dis-  

agree must have CJ! = 0,  g j  = 1, and hence, d > d! - 1  
Property A1-3 shows t h a t  any other  algorithm f o r  generating 

R = 1/2 f ixed canonic systematic convolutional codes which 

dj  j 0  
j 

'0 0 j 0  J O  

increases the column distance by one each t i m e  a 1 i s  added 

t o  the  generator d i f f e r s  from algorithm A1 i n  t h a t  such 1's 

a r e  not always added a t  the f i r s t  opportunity, Note a l so  

t h a t  i n  the  computation of s t ep  ( 2 ) ) ,  if d > d I then 

d j  = d 

and t h a t  t he  codes obtained from algorithm A 1  exhib i t  the  

j j -1 
i s  s e t  t o  0 i n  s t e p  ( 3 1 ,  then d j  = dj-l; + 1, and if g 

j -1 j 
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"nestedt1 property, i o e r ,  f o r  ml < m 2'  [9] = [ [9] I 0 ,  
-i m2 ml 

Algorithm A1 was programed on the Univac 1107 com- 

puter a t  t h e  University Computer Center,  The most d i f f i -  

c u l t  p a r t  of algorithm A1 t o  program i s  t h e  computation of 

d .  i n  s t ep  ( 2 ) .  This was done by using a sequential-de- 

coding-like algorithm suggested by Forney [28] e 

chart  f o r  t h i s  algorithm, ca l led  SEAL, i s  shown i n  Figure 

6-2,  The flow chart  f o r  algorithm A 1  i s  then shown i n  

Figure 6 . 3 ,  

3 
The flow 

The codes obtained from algorithm A1 a r e  compared with 

Bussgang's [30] optimal codes and Lin and Lyne's [29] near- 

optimal codes i n  Table 6-1, Bussgang's computer search f o r  

optimal codes reached m = 15  before t h e  amount of computa- 

t i o n  became too large.  Lin and Lyne car r ied  t h e i r  near- 

optimal search out  t o  m = 20 (Forney [28] has extended t h i s  

t o  m = 48) Algorithm A1 i s  su f f i c i en t ly  simple t o  allow 

hand computation out t o  m = 22 and it w a s  extended t o  m = 

7 1  by computer. Table 6-1 a l so  compares the  codes obtained 

with t h e  non-asymptotic G i l b e r t  lower bound [30] , and it  

can be seen t h a t  t h e  codes remain good out t o  m = 71. The 

ad jo in ts  of t he  codes obtained from algorithm A l ,  which 

a r e  known t o  have exactly the  same set of codeword weights 

over t h e  f i r s t  constraint  length [30] 

Table 6.1. 

, a r e  a l so  given i n  
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C = branch counter 

Ll = load a 111" 

LO = load a ''0" 

I R  = information r e g i s t e r  

CP = compute p a r i t y  d i g i t  

P = p a r i t y  d i g i t  

W = Hamming weight of path 

T = threshold 

LID = last  information d i g i t  
i n  information register 

Fig. 6.2 .  SEAL f5ow chart .  
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I=  I 

WR = write 

T = t h r e s h o l d  

W = Hamming weight  of p a t h  

I 
i +  I 
\ 

Fig .  6,3. Flow c h a r t  for a l g o r i t h m  A l ,  
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TABLE 6-1 

COMPARISON OF R = 1/2 CODES 

0 1  1 2 2 2 
1 1  1 3 3 3 
2 0  1 3 3 3 
3 1  0 4 4 4 
4 0  1 4 4 4 
5 1  1 5 4 5 
6 0  0 5 4 5 
7 0  0 5 5 5 
8 1  Q 6 5 6 
9 0  0 6 5 6 
10 0 0 6 5 7 
11 1 1 7 6 7 
12 0 1 7 6 7 
13 0 1 7 6 8 
14 0 0 7 6 8 
15 0 0 7 7 9 
16 1 0 8 7 9 
17 0 0 8 7 9 
18 0 0 8 7 9 
19 0 1 8 8 10 
20 1 0 9 8 10 
21 0 1 9 8 10 
22 0 0 9 8 10 
23 0 1 9 9 10 
24 1 0 10 9 11 
25 0 0 10 9 11 
26 0 1 10 9 11 
27 1 0 11 9 11 
28 0 0 11 10 12 
29 0 1 11 10 12 
30 0 0 11 10 12 
31 1 1 12 10 12 
32 0 0 12 11 13 
33 0 0 12 11 13 
34 0 0 12 11 13 
35 1 0 13 11 14 

2 
3 
3 
4 
4 
5 
5 
6 
6 
6 
7 
7 
8 
8 
8 
9 

36 0 0 13 11 14 
37 0 1 13 12 14 
38 0 0 13 12 14 
39 0 1 13 12 15 
40 1 0 14 12 15 
41 0 0 14 13 15 
42 0 0 14 13 15 
43 1 0 15 13 16 
44 0 0 15 13 16 
45 0 1 15 13 16 
46 0 0 15 14 16 
47 0 1 15 14 17 
48 1 1 16 14 17 
49 0 1 16 14 
50 0 0 16 15 
51 0 1 16 15 
52 0 0 16 15 
53 1 0 17 15 
54 0 0 17 15 
55 0 1 17 16 
56 1 0 18 16 
57 0 1 18 16 
58 0 1 18 16 
59 0 0 18 16 
60 0 0 18 17 
61 0 1 18 17 
62 1 0 19 17 
63 0 0 19 17 
64 0 1 19 18 
65 1 0 20 18 
66 0 0 20 18 
67 0 1 20 18 
68 0 1 20 18 
69 0 1 20 19 
70 0 0 20 19 
71 1 1 21 19 

d = d  - 
dG - ‘LL = %IN AEJD LYNE B BUSSGANG 

A = adjo in t  codes 
gj 
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An i n t e re s t ing ,  but a s  y e t  unsolved, question i s  

whether algorithm A 1  w i l l  continue t o  produce good codes, 

i.e., codes whose column distance increases l i n e a r l y  w i t h  j ,  

a s  j becomes a r b i t r a r i l y  large.  The  amount of computation 

required by algorithm Al, because of the calculat ion of d 

i n  s t ep  ( 2 ) ,  appears t o  increase exponentially with increas- 

ing j ,  a s  it does i n  a l l  known search techniques f o r  finding 

codes. However, because of i t s  s implici ty ,  algorithm A1 

requires less computation than  other  known search techniques. 

2. Algorithms fo r  Generating Good R = and R = - Codes 

For r a t e s  R = - N > 2,  an algorithm i s  sought f o r  gen- 

j 

1 1 
4 

N' 
era t ing  codes such t h a t  d = w ( [9] .),  j = 0,1,2,..., m, 

j H J 
and 1's a r e  added t o  

consistent with t h i s  

the  generator a t  t h e  f i r s t  opportunity 

constraint ,  Since there  a r e  now N - 1 

, t o  be specif ied i n  ( 2). ( 3) (N) 
g j l  / g j1  , * e = ,  g j  1 d i g i t s ,  viz.  

each block, there  w i l l  not be a unique algorithm with the  

above property f o r  N > 2. For example, f o r  N = 3 the  three 

following algorithms each r e s u l t  i n  a code such t h a t  d = 

wH( [g] j )and "ones" a r e  added t o  the generator a t  the 

e a r l i e s t  opportunity. 

d .  I d 

( 2) - 
g j  1 - g j l  
crease by 2. (For convenience l e t  g 
- ( 3) - 4j  

j 

For N = 3 ,  it i s  w e l l  known [29] t h a t  

f 1 so t h a t  it i s  unnecessary t o  test  the  choice j -1 3 
(3 )  = 1 since the column distance can never in-  

( 3) 
jl 

and g - ( 2) 
- g j  ( 2) 

j l  
e )  
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Compute d 

S e t  g 

If d .  > djel, go t o  (6 ) .  

= 1, -1 3) = 0, g j  
j '  

( 2) 
j 

Compte d I f  d .  > dj-l, go t o  (6). 

= 0. (3rJ  
j "  

(2)  - 
S e t  g - g j  j 
If j = m, stop, Otherwise,set j = j + 1 and 

go t o  (1) 3 

Alaorithm A3 

Steps (0) through (5) a r e  t h e  same a s  i n  algorithm 

A2. 

(6) I f  j = m,  stop. Otherwise, interchange s teps  

(1) and ( 3 ) ,  set j = j + 1, and go t o  (1). 

Alcrorithm A4 

Steps (0) through (5) a r e  t h e  same a s  i n  algorithm 

A2. 

(6) 

The  codes 

shown i n  Table 

Lin and Lyne's 

I f  j = m, stop, Otherwise, if d increased 
j 

during step (21, interchange steps (1) and 

( 3 ) ,  set j = j + 1, and go t o  11). I f  d 

increased during step (4) or remained the 
j 

same, set j = j + 1 and go t o  (1). 

obtained from algorithms A2,  A3,  and A4 a r e  

6,2 and a r e  compared t o  Bussgang's codes, 

codes, and t o  t h e  non-asymptotic Gi lber t  l o w e r  

bound, Each algorithm was car r ied  out t o  m = 35 by computer, 
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TABLE 6-2 

COMPARISON OF R = 1/3 CODES 

Algorithm A2 Algorithm .A3 Algorithm A4 

0 3 3  3 
1 4 4  4 
2 5 5  5 
3 6 6  6 
4 6 7  7 
5 7 8  8 
6 8 9  9 
7 8 9  
8 9 10 
9 9 11 
10 10 12 
11 10 12 
12 11 13 
13 11 14 
14 12 15 
15 12 15 
16 13 16 
17 14 16 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

1 
1 
1 
0 
1 
0 
0 
0 
0 
1 
1 
0 
1 
0 
1 
1 
0 
1 
0 
0 
1 
0 
1 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
1 
0 
1 

1 3 1 1 3 1 1 3 
0 4 1 0 4 1 0 4 
0 5 0 1 5 0 1 5 
1 6 1 0 6 1 0 6 
0 7 1 0 7 1 0 7 
1 8 1 0 8 1 0 8 
1 9 0 0 8 0 0 8 
1 10 1 0 9 0 1 9 
0 10 0 1 10 1 0 10 
0 11 0 0 10 0 0 10 
0 12 1 0 11 0 1 11 
0 1 2  0 1 12 0 1 12 

0 0 12 1 0 13 0 13 
0 13 0 0 12 0 0 13 
0 14 0 1 13 1 0 14 
0 15 1 0 14 0 0 14 

0 1 15 0 15 1 0 15 
0 16 0 0 15 0 0 15 
1 17 0 1 16 1 0 16 
0 17 1 0 17 1 0 17 
0 18 0 0 17 1 0 18 
0 18 0 1 18 1 0 19 
0 19 0 0 18 0 0 19 
1 20 1 0 19 0 0 19 
0 20 0 0 19 0 1 20 
0 20 1 0 20 1 0 21 
0 21 0 1 21 0 0 21 
0 22 0 0 21 0 0 21 
1 23 0 1 22 0 1 22 
0 23 0 1 23 0 0 22 
0 23 0 0 23 1 0 23 
1 24 0 3 23 1 0 24 
0 24 1 0 24 0 0 24 
0 25 1 0 25 1 0 25 
0 25 0 0 25 0 1 26 
0 26 1 0 26 0 0 26 

dG = d 
GILBERT BOUND ‘LIE4 AND LYNE 

d =  
LL 
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Again the  codes a r e  quite good and a r e  considerably longer 

than other  known good R = 1/3 codes, Note t h a t  t he  codes ob- 

ta ined from Algorithms A2,  A3, and A4 exhib i t  about t h e  same 

distance properties.  Indeed it seems t h e  many var ia t ions of 

t he  algorithm ava i lab le  f o r  R = 1/3 w i l l  have l i t t l e  e f f e c t  

on the  distance propert ies  of the  r e su l t i ng  codes. The two 

adjo in ts  of each of t he  codes obtained from Algorithms A2, 

A3, and A 4  a r e  given i n  Table 6.3. 

Note t h a t  a t  m = 7 ,  the  code obtained from Algorithm A2 

has grea te r  feedback decoding minimum distance than L in  and 

Lynels near-optimal code. It  can be shown t h a t  t h i s  code 

m e e t s  t he  Plotkin upper bound [8] on feedback decoding mini- 

mum distance a t  m = 7 .  

I 

( 3) ( 4) 
j l  

t g j l  , and g ( 2) 
j l  

To generate R = 1/4 codes, g 

must be specif ied f o r  each j ,  and it must be recognized t h a t  

an increase of e i t h e r  one o r  two i n  t h e  column distance f o r  

each j i s  possible,  

generating R = 1/4 codes with the  property t h a t  d 

([_SI  ,) and 1's a r e  added t o  t h e  generator a t  t he  e a r l i e s t  

Only one algorithm w i l l  be given f o r  

= w j H 

Alaorithm A5 

go t o  (8) 
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(4F = 1, i = 2, and go t o  (8J. = 0, gi 
( 3) 

S e t  gi  

= 1, i = 3, and go t o  (8). 
(3). 

= 0, g j  
(21 

j 
Se t  g 

S e t  gi  (3) = 0,  i = 4, and go t o  (8)- 

(*I = 0, i = 5, and go t o  (8). = 1, g j  

( 2) = 1, gj  (3) = 0 ,  i = 6, and go t o  (8). Se t  g 

S e t  g (2)  = o and go t o  (91. 

Compute d j e  

-I (3) 
Set gj  

j 

j 
I f  dj  = dj-l, go t o  (i + 1). 

If j = m,stop. O t h e r w i s e ,  set j = j + 1 and 

Table 6.4 compares the R = 1/4 codes generated by A l -  

gorithm A5, Lin and Lynels codes, and the non-asymptotic 

Gilber t  lower bound. Algorithm A5 was car r ied  out t o  m = 35 

by computer and again good codes w e r e  found. The three  ad- 

j o i n t s  of the  code produced by Algorithm A5 a r e  given i n  

Table 6.5, Clearly propert ies  A1-1 and A1-3, a s  w e l l  a s  the 

"nested" property, a l so  hold f o r  the codes of Algorithms A2 

through A5, 

3. An Algorithm f o r  Generating R = 1/2 Codes with 

Large Free Distance 

Clearly,  it i s  of considerable interest  t o  f i n d  codes 

> %Do A with known %REE, especial ly  codes f o r  which dFREE 
s l i g h t  modification of t h e  preceding algorithms can be used 

f o r  t h i s  purpsse, Algorithm A6 indicates  t h e  necessary modi- 

f i c a t i o n  of Algorithm A l e  
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TABLE 6 - 3  

ADJOINTS OF R = 1/3 CODES 

0 1  1 
1 1  1 
2 0  0 
3 1  0 
4 0  1 
5 0  1 
6 0  1 
7 1  1 
8 1  1 
9 1  0 
10 0 0 
11 1 0 
1 2  0 0 
1 3  0 0 
1 4  1 1 
1 5  1 1 
1 6  0 0 
17 1 1 
18 0 1 
19 0 0 
20 0 1 
2 1  1 0 
22 0 0 
23 1 1 
24 1 0 
25 1 0 
26 1 1 
27 0 1 
28 0 0 
29 1 0 
30 0 0 
3 1  0 0 
32 1 1 
33 0 0 
34 0 1 
35 0 0 

1 1 
1 0 
1 0 
1 1 
0 0 
0 1 
1 0 
1 1 
1 0 
0 1 
1 1 
0 1 
1 1 
0 0 
1 1 
0 1 
1 1 
0 0 
0 0 
0 1 
1 0 
1 0 
0 1 
1 1 
1 1 
1 1 
0 1 
0 1 
1 0 
0 1 
0 0 
0 1 
1 0 
0 1 
0 0 
1 1 

1 1 
1 1 
1 0 
0 1 
0 1 
1 1 
1 1 
1 0 
1 1 
0 0 
0 I) 
0 1 
0 1 
0 0 
1 1 
0 0 
1 1 
1 0 
0 1 
1 1 
1 1 
1 0 
1 1 
1 0 
1 0 
1 1 
0 0 
1 0 
0 0 
0 1 
1 0 
1 0 
0 1 
1 1 
0 0 
0 0 

1 1 
1 0 
1 1 
0 0 
0 1 
1 0 
0 1 
0 0 
1 0 
1 0 
1 1 
0 1 
0 0 
0 0 
1 0 
0 1 
1 1 
1 0 
1 0 
1 1 
1 0 
1 1 
0 0 
1 1 
0 1 
0 1 
0 1 
0 0 
0 0 
1 0 
1 0 
1 1 
1 1 
0 1 
0 1 
1 0 

1 1 1 1 
1 1 1 0 
1 0 1 1 
0 1 0 0 
0 1 0 1 
1 1 1 0 
1 1 0 1 
0 0 0 1 
0 0 0 1 
1 0 1 0 
0 1 1 0 
1 0 1 0 
1 0 1 1 
0 1 0 0 
1 0 0 1 
0 1 1 0 
1 0 1 1 
1 1 1 0 
3 1 0 0 
0 1 0 0 
1 0 1 1 
1 0 0 1 
1 1 0 1 
0 1 0 0 
0 0 0 0 
0 1 0 1 
1 1 0 0 
1 1 0 1 
1 0 1 0 
0 0 0 0 
1 0 0 0 
0 0 1 1 
0 0 1 0 
1 0 1 0 
1 0 1 1 
1 1 0 0 
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TABLE 6 - 4  

COMPARISON OF R = 1/4  CODES 

dG %L 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1 2  
13 
1 4  
15 
1 6  
17 
18 
19 
20 
2 1  
22 
2 3' 
24 
25 
26 
27 
28 
29 
30 
3 1  
32 
33 
34 
35 

1 
1 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

1 
1 
0 
0 
1 
0 
0 
0 
0 
1 
1 
0 
1 
0 
1 
0 
0 
0 
1 
1 
0 
0 
0 
0 
1 
0 
1 
1 
0 
0 
1 
1 
0 
1 
0 
0 

1 
0 
1 
1 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 

4 
6 
8 
9 

10 
11 
1 2  
1 4  
1 5  
16 
17  
17  
19 
20 
2 1  
22 
23 
24 
25 
26 
27 
28 
29 
30 
3 1  
32 
33 
34  
34 
35 
36 
37 
37 
39 
39 
40 

4 
6 
7 
8 
9 
10 
11 
1 2  
1 3  
1 3  
1 4  
1 5  
1 6  

4 
6 
8 
9 

10 
11 
1 3  
1 4  
1 5  
1 6  
1 7  
18 
19 
2 1  
22 
23 

- 
d~ - d~~~~~~~ BOUND %L = %IN AND LYNE 
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TABLE 6.5 

ADJOINTS OF R = 1/4 CODES 

1st adjo in t  2nd ad jo in t  3rd adjo in t  

0 1 
1 1 
2 0 
3 1 
4 1 
5 0 
6 1 
7 0 
8 0 
9 0 
10 1 
11 0 
12 0 
13 0 
14 0 
15 1 
16 0 
17 0 
18 1 
19 1 
20 1 
21 1 
22 0 
23 0 
24 1 
25 0 
26 1 
27 1 
28 1 
29 0 
30 1 
31 1 
32 1 
33 1 
34 0 
35 1 

1 
0 
1 
1 
1 
0 
1 
0 
1 
1 
0 
0 
0 
1 
1 
0 
1 
1 
0 
0 
1 
1 
1 
0 
0 
1 
0 
1 
0 
0 
1 
0 
1 
1 
1 
1 

1 
1 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
1 
1 
0 
1 
0 
1 
1 
0 
1 
1 
0 
0 
0 
1 
0 
0 
1 
1 
0 
0 
1 
0 
0 
0 

1 
0 
1 
1 
0 
0 
1 
1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
1 
0 
1 
0 
1 
1 
0 

1 
1 
1 
1 
0 
1 
0 
1 
1 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
1 
1 
0 
1 
0 
1 
0 
1 
1 
1 
0 
1 
0 
0 
0 
1 
1 

1 
1 
0 
1 
0 
0 
1 
1 
0 
1 
0 
0 
0 
0 
1 
1 
0 
1 
1 
0 
0 
1 
0 
1 
1 
1 
1 
1 
0 
1 
1 
1 
0 
1 
0 
0 

1 
1 
0 
0 
1 
1 
1 
1 
0 
0 
1 
1 
0 
0 
0 
1 
0 
0 
1 
1 
0 
1 
1 
0 
1 
0 
1 
1 
0 
1 
1 
1 
0 
1 
1 
0 

1 
1 
1 
0 
1 
0 
1 
0 
0 
1 
1 
1 
1 
0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
0 
0 

1 
0 
1 
1 
1 
1 
1 
0 
1 
0 
1 
1 
0 
0 
1 
0 
0 
0 
1 
0 
1 
1 
1 
0 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
0 
1 



1 2 8  

A l s o r i t h m  A6 ( A s s u m e  L 2 m.) 

(0) 

( 1 )  Set g j  = 1. 

Set go = 1, Do = 2 ,  and j = 1, 

and go t o  ( 4 )  e 

j-1" (3) S e t  g j  = 0 a n d D  = D 

( 4 )  I f  j = m, stop. O t h e r w i s e ,  set j = j + 1 
j 

and go t o  ( 1 )  

The  f o l l o w i n g  properties of the codes resu l t ing  f r o m  

A l g o r i t h m  A 6  w i l l  be presented w i t h o u t  proof, s i n c e  the 

proofs a r e  s imi l a r  t o  those used t o  prove the properties of 

A l g o r i t h m  .A1 e 

Property A6-1 wH( [ g ] ) = D .  f o r  a l l  j .  
3 j 

Property A6-2 I n  the computation of step ( 2 )  , i f  % > Dj-l, 

then D = D +l. j j -1 

ProDsrtv A6-3 T h e  codes obtained frorn Algorithm A6 exhibit 

the Itnestedt1 property. 

Theorem 6.1 wH( [g] ) = D = d FREE f o r  a l l  j ,  w h e r e  d FFU3E 
j j 

i s  the free dis tance of the code w i t h  m e m o r y  order j .  

by property A6-1 and theorem 
!FREE Proof wH( [g] 1 = D .  5 

2.4.  

3 

j 

j 

5 wH( [g] by property F 2  of the free distance. 
dFREE 

T h e r e f o r e  d = wH( [g] 1 fo r  a l l  j.1 

T h e o r e m  6 - 2  For a l l  the codes obtained f r o m  A l g o r i t h m s  A l ,  
j 

FREE 

A2, A3 ,  A4, and A5,  %REE = % = = d e  
m 

Proof d = d = wH( ["] 1 i s  a property of the codes ob- 
m 

ta ined f r o m  A l g o r i t h m s  A l ,  A2,  A3,  A4,  and A5, and wH( 
m FD 

g [ I '  m 
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- follows from property F2-1 - %REE 

I n  general Algorithm A 6  w i l l  r e s u l t  i n  generators with 

grea te r  weight than those obtained from Algorithm A l .  There- 

fore ,  dlFREE f o r  the  codes obtained from Algorithm A 6  w i l l  be 

la rger  than "LFD f o r  the same length codes obtained from 

Algorithm A l e  Clearly,  it i s  w i s e  t o  choose L a s  large as 

i s  computationally possible i n  Algorithm A6.  

Table 6.6  shows the  r e s u l t s  of applying Algorithm A 6  t o  

the construction of an R = 1/2 f ixed  canonic systematic 

binary code with m = 35 and L = 71,  The adjoint  of t h i s  code 

= 18 and i s  a l so  given i n  Table 6 - 6 .  It i s  i n t e r -  

es t ing  t o  note t h a t  Algorithm A 1  produced a code with m = 35 
has %REE 

and !FREE = % = 13. Algorithm A 6  resu l ted  i n  a code with 

m = 35 and dFREE = 1 7 ,  dFD was checked fo r  t h i s  code and 

found t o  be 13, Therefore, Algorithm A6 produced a code with 

the same length and the same %D, but with a la rger  dFREE. 
Although the  two codes have the same d the code obtained 

from Algorithm A 6  should exhibi t  a lower probabi l i ty  of e r ro r  

when used with sequential  decoding, T h i s  was ve r i f i ed  by 

FD' 

simulating a sequent ia l  decoder fo r  use on a binary symmetric 

channel on the  Univac 1107, The r e s u l t s  of t h i s  simulation 

w i l l  be presented i n  Section VI.C, 

Note t h a t  a l l  the  codes constructed i n  Section V1.A have 

distances considerably be t t e r  than the  non-asymptotic Gilber t  

lower bound and a r e  longer than any previously known good 

codes, Also, each code has the property of minimizing the  
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TABLE 6-6 

CODES OBTAINED FROM ALGORITHM A6 

j !FREE 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

1 
1 
1 
0 
1 
1 
0 
1 
0 
1 
0 
0 
1 
1 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 
0 
L 
1 
1 
0 
0 
0 
0 
0 
0 
0 
1 

2 
3 
4 
4 
5 
6 
6 
7 
7 
8 
8 
8 
9 
10 
10 
10 
10 
10 
11 
12 
13 
13 
13 
13 
13 
$4 
15 
16 
16 
16 
16 
16 
16 
16 
16 
17 

1 
1 
0 
1 
0 
1 
0 
1 
1 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
1 
1 
1 
0 
0 
1 
0 
0 
0 
1 
0 
0 
1 
1 
1 
1 

* = adjo in t  codes 
gj  

___I NOTE: T h e  adjoint  code w i t h  m = 35 has cs;IREE = 18. 
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number of modulo-2 adders needed i n  the encoding c i r c u i t  f o r  

codes of a given distance and cons t ra in t  length. 

B. More Construction Algorithms f o r  R = 1/2 Codes 

It was shown i n  theorem 6.2 t h a t  t h e  codes produced 

This i s  a by Algorithms A1 through A5 have dFREE = %,,. 
d i r e c t  r e s u l t  of minimizing the  number of modulo-2 adders 

needed i n  t he  encoding c i r c u i t .  Hence t h i s  p r o p r t y  must be 

abandoned i f  codes w i t h  dFmE considerably la rger  than dFD 
a r e  t o  be obtained, I n  this  section a number of algorithms 

a r e  presented f o r  producing f ixed R = 1/2  binary codes w i t h  

l a rge  free distance,  

1. Systematic R = 1/2 Codes 

Since a low density of 1's i n  t he  generator necessarily 

produces a code w i t h  low the  following algorithm was 

designed t o  produce a high density of 1's i n  t he  generator. 

( 2) = g j e )  
j l  

(For convenience, l e t  g 

Alaorithm A7 

(0) 

(1) S e t  g j  = 0 ,  

(2)  Compute d 

( 3 )  

(4)  I f  j = m,  stop. Otherwise, set j = j + 1 

S e t  go = 1, do = 2,  and j = 1, 

I f  d .  > djWl, go t o  ( 4 ) .  
j *  J 

j- 
Set g j  = 1 and compute d 

and go t o  (1) 

This code and i t s  ad jo in t  a r e  shown f o r  m = 35 i n  Table 6 - 7  

along with the non-asymptotic Gilber t  lower bound. Note t h a t  
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TABLE 6-7  

CODES OBTAINED FROM ALGORITHM A7 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1 2  
1 3  
14 
1 5  
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 

1 
1 
0 
1 
0 
1 
1 
1 
0 
0 
1 
1 
1 
1 
1 
1 
0 
0 
1 
0 
0 
0 
1 
0 
0 
1 
1 
1 
1 
0 
1 
0 
1 
0 
0 
1 

2 
3 
3 
4 
4 
5 
5 
5 
6 
6 
6 
7 
7 
7 
8 
8 
8 
9 
9 
9 
9 
9 
9 
9 
10 
10 
10 
10 
11 
11 
11 
11 
12 
12 
13 
13 

2 
3 
3 
4 
4 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 
7 
7 
7 
7 
8 
8 
8 
8 
9 
9 
9 
9 
9 
10 
10 
10 
10 
11 
11 
11 
11 

* = adjo in t  codes 
gj  
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di must be recompted i n  s t e p  (3) since,  unlike Algorithm 
J 

A 1  w h e r e  only the choice g = 1 can increase d e i t h e r  
j j f  

j m  
= 0 o r  g = 1 can increase d 

j 
Since it is  known t h a t  a randomly constructed code 

with high probabi l i ty  a good code [31] , the  following 

gj  

i s  

algorithm was designed t o  keep the number of 1's and 0's i n  

t he  generator sequence [gO1 ( 2)' gll ( 2) I gz1 ( 21 ,...I about 

(21 - - g j " )  
j l  

equal. (For convenience, l e t  g 

T h i s  code and 

S e t  g 0 
S e t  g = 0, 

Compute d . I f  d .  > d , go t o  (7 )  e 

S e t  g = 1. 

Compute d (. 

= 1, do = 2, w = 0,  and j = 1. 

j 

j J j -1 

j 
If d .  > dj,l, set w = w + 2 

J 
and go t o  

I f  j > wf set w = w + 2 and go t o  ( 7 ) .  

S e t  g = 0 ,  

I f  j = m,  stop. O t h e r w i s e ,  set j = j + 1 
j 

and go t o  (1) e 

i t s  adjoint  a r e  given f o r  m = 35 i n  Table 6.8 

along w i t h  the non-asymptotic G i l b e r t  lower bound, Again 

note t h a t  either g = 0 or  g = 1 can increase d 
j "  j j 

Algorithm A 8  can be modified t o  provide merely an ex- 

tension of Bussgang's optimal codes from rn = 1 5  t o  m = 35, 

Both of Bussgang's optimal m = 1 5  codes w e r e  extended using 

Algorithm A8 and the r e su l t i ng  codes, along w i t h  t h e i r  ad- 

j o i n t s  and the  non-asymptotic Gilber t  lower bmnd, a r e  given 
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TABLE 6.8 

CODES OBTAINED FROM ALGORITHM A8 

9, d 
j dG 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1 2  
13 
14 
1 5  
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

1 
1 
0 
1 
0 
1 
0 
1 
1 
0 
0 
1 
0 
1 
0 
1 
0 
1 
1 
0 
0 
1 
0 
0 
1 
1 
0 
1 
0 
1 
0 
0 
1 
1 
0 
1 

1 
1 
1 
0 
1 
1 
0 
1 
0 
1 
0 
0 
1 
0 
1 
0 
1 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 .  
1 
1 
0 
1 
0 

2 
3 
3 
4 
4 
5 
5 
5 
6 
6 
7 
7 
7 
8 
8 
8 
8 
8 
9 
9 
9 
9 
9 

LO 
10 
10 
11 
11 
11 
11 
11 
12 
12 
12 
13 
13 

2 
3 
3 
4 
4 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 
7 
7 
7 
7 
8 
8 
8 
8 
9 
9 
9 
9 
9 
10 
10 
10 
10 
11 
11 
11 
11 

~ ~~~~~~ ~ ~~~ 

* = adjoint  codes 
gj  

dC = d~~~~~~~ BOUND 
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i n  Table 6.9, F ina l ly  %D and dFaEE a r e  given f o r  each of 

the  e ight  codes constructed i n  t h i s  section i n  Table 6.10, 

Again, %D i s  the  same f o r  a code and i t s  adjoint ,  but dFREE 
i s  not necessarily t h e  same since the  set of codeword weights 

a r e  iden t i ca l  only over one constraint  length, For a l l  ex- 

cept t h e  code of Algorithm A7,  it i s  possible t o  give only 

a range f o r  e Note, however, t h a t  f o r  each code d 
%REE FKE E 

i s  considerably l a rge r  than %D and t h a t  %D i s  about the same 

a s  f o r  t h e  m = 35, R = 1/2 codes constructed i n  Section V1.A. 

Hence it i s  reasonable t o  expect t h a t  these codes should 

perform considerably b e t t e r  with sequential  decoding than 

those of the  previous section. That they do w i l l  be demon- 

s t r a t e d  i n  Section V1.C. 

2. 

I t  has been noted t h a t  non-systematic codes a r e  capable 

A Non-systematic R = 1 /2  Code 

of providing a lower probabi l i ty  of decoding e r ro r  than 

systematic codes for  sequential decoding. Howsver it i s  a l s o  

desirable  t h a t  t he  "quick-look" and ease of implementation 

propert ies  of systematic codes be retained. 

shown t h a t  t he  c l a s s  of f ixed binary R = 1 /2  non-systematic 

codes f o r  which a Gi lber t  lower bound on c # , ~  was proved i n  

Massey [32] has  

Section 1V.D has these propert ies ,  For these codes 

Therefore, f o r  any information sequence whose transform is  

x(D) , 
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TABLE 6.9 

EXTENSIONS OF BUSSGANG'S OPTIMAL M = 15 CODES 

BUSSGANG 1 BUSSGANG 2 

dG ej d 
j 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

2 1 
3 1 
3 0 
4 1 
4 0 
4 1 
4 0 
5 1 
5 1 
5 0 
5 0 
6 1 
6 0 
6 1 
6 1 
7 1 
7 0 
7 0 
7 0 
8 1 
8 1 
8 0 
8 0 
9 1 
9 0 
9 1 
9 0 
9 1 
10 0 
10 1 
10 0 
10 0 
11 1 
11 1 
11 0 
11 1 

1 
1 
1 
0 
1 
1 
0 
1 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
0 
1 
0 
0 
1 
1 
1 
1 
0 
0 
1 

9 
9 
9 
9 
9 
10 
10 
10 
10 
11 
11 
11 
11 
12 
12 
12 
13 
13 
13 
13 
13 

1 
1 
1 
0 
1 
1 
0 
1 
0 
1 
0 
0 
1 
0 
0 
0 
1 
1 
0 
0 
1 
1 
0 
1 
0 
0 
1 
1 
1 
0 
0 
1 
0 
0 
1 
1 

1 
1 
0 
1 
0 
1 
0 
1 
1 
0 
0 
1 
0 
1 
1 
1 
1 
1 
0 
1 
0 
1 
0 
0 
1 
0 
0 

1 
0 
1 
1 
1 
0 
1 
1 

* 1  

9 
9 
9 
9 
10 
10 
10 
10 
10 
10 
11 
11 
11 
12 
12 
12 
12 
12 
13 
13 
13 

A = a d j o i n t  codes 
gj 

- 
dG - dGILBERT BOUND 
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TABLE 6.10 

DISTANCE PROPERTIES OF 8 m = 35 CODES 

CODE 

A l g o r i t h m  A7 

A7 adjoint  

A l g o r i t h m  A 8  

A8 ad jo in t  

A8-BUSSGANG 1 

A8-Bl  ad jo in t  

A8-BUSSGANG 2 

A8-B2 ad jo in t  

13 

1 3  

1 3  

13  

13  

13  

1 3  

13  

18 2 

16 I 

18 5 

16 I 

18 I 

18 I 

17 I 

%REE ' 
%REE ' 
!FREE 
%REE ' 
!FREE ' 
!FREE ' 
%REE ' 

16 

22 

20 

22 

20 

20 

20 

23 
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and the information sequence can be obtained from the two 

encoded sequences with a delay of one t i m e  u n i t  simply by 

adding together y( ’ )  (D) and y(2p (D) e This allows a quick 

loDk a t  the  data sequence t o  be made before submitting the 

received sequence t o  e r r o r  correction, i , e , ,  t h i s  code has 

the llquick-lookll property. (Clearly,  t h e  f i r s t  K received 

sequences alone provide the lLquick-looktl f o r  canonic system- 

a t i c  codes.) 

Consider t h e  following r ea l i zab le  function: 

2 m T l + l  

= 1 + D + D  +...+De y(D) - + - 
x (D) 1 + D  (1451 

Form (145) it follows t h a t  

(146) 
m + l  

y(D) + Dy(D) = x(D) + D x (D) 

y(D) = x ( D )  + D [y(D) + Dm x(D)] 

o r  

.) (147) 

A l i n e a r  sequential  c i r c u i t  (LSC) which r ea l i zes  equation 

(147) i s  shown i n  Figure 6.4, 

of G‘J) (D) , then 

If $1 (D) i s  the  complement 

(1 48) 

A c i r c u i t  which r e a l i z e s  equation (148) i s  shown i n  Figure 

6.5. Hence i f  G ( J ) ( D )  has a high density of 1’s and therefore  
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Fig. 6.4. An LSC which realizes equation (14'3b. 

Fig. 6.5. An LSC which realizes equation (i@).- 
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requires many modulo-2 adders i n  i t s  rea l iza t ion ,  -(jY G (D) ,  

which requires few modulo-2 adders i n  i t s  rea l iza t ion ,  can 

be implemented instead and t h e  output complemented t o  produce 

y ( j ’  (D) .  This f a c t  w i l l  be used t o  grea t ly  reduce t h e  com- 

plexi ty  of the c l a s s  of R = 1/2 codes with G ( 2 ) ( D )  = D + G ( 1 9  

(D).  A code of t h i s  type w i l l  now be constructed. (For con- 

Alaorithm A9 

(2)  Cmpute d If d .  > d j  - 1f go t o  (4). 
j ’  J 

(3)  S e t  g j  ( l )  = 1. 

(4) I f  j = m, stop. Otherwise, set j = j + 1 

and go t o  (1) 

Note t h a t  t he  set of weights of the  codewords [ y ] 
(’’ = o o r  g x # 0 i s  the  same whether g 

cancels t he  e f f e c t  of complementing g (1) 

with 
j 

= 1 since com- 
j j 0 

plementing x 
j j 

Hence there is  no need t o  recompute d i n  s t ep  (31 as i n  

Algorithm A7 since i f  s e t t i n g  g (l’ = 0 does not increase d 

then ne i ther  does s e t t i n g  g 

j 

j ’  
= 1, Also, an increase of (1) j 

i 

two i n  d .  a t  any s t ep  

[ 1,1] f o r  some i n p a t  
J 

P’I j input sequence 

-I 

i s  c lear ly  impossible, since i f  y = 
I- -I j 

sequence [x] , then y = 10,OJ f o r  t he  
j j - - [ [ 91 j-1, zj] , and t h e  column 

distance does not increase a t  a l l ,  Hence a t  each s t ep  i n  t h e  

algorithm, d .  e i t h e r  increases by 1 o r  s tays  t h e  same, The 

code produced by Algorithm A9 w i t h  m = 35 i s  given i n  Table 
J 

6.11 along with t h e  non-asymptotic G i l b e r t  lower bound. 
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TABLE 6-11 

CODES OBTAINED FROM ALGORITHM A9 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1 2  
13  
14 
15 
16 
17 
18 
19 
20 
2 1  
22 
23 
24 
25 
26 
27 
2 8  
29 
30 
31 
32 
33 
34 
35 

1 
1 
1 
0 
1 
1 
0 
1 
1 
1 
0 
1 
0 
1 
1 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
1 
1 
0 
0 
1 
1 
1 
1 

1 
0 
1 
0 
1 
1 
0 
1 
1 
1 
0 
1 
0 
1 
1 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
1 
1 
0 
0 
1 
1 
1 
1 

2 
3 
3 
4 
4 
4 
5 
5 
5 
5 
6 
6 
7 
7 
7 
8 
8 
8 
8 
8 
9 
9 
9 
9 
9 
9 
10 
10 
10 
10 
11 
11 
11 
11 
11 
11 

2 
3 
3 
4 
4 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 
7 
7 
7 
7 
8 
8 
8 
8 
9 
9 
9 
9 
9 
10 
10 
10 
10 
11 
11 
11 
11 

dc = d~~~~~~~ BOUND 
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The free distance f o r  t h i s  code i s  known t o  be a t  l e a s t  

1 7 ,  and i s  probably much higher, The  complete encoding cir- 

c u i t  i s  shown i n  F igu re  6.6, Note t h a t  only 11 modulo-2 

adders a r e  needed i n  the encoding c i r c u i t ,  This i s  exactly 

the  same number needed t o  implement the m = 35 code of 

Algorithm A 1  w h i c h  has %REE = 13, 

i n  %REE (and therefore  i n  decoding probabi l i ty  of e r ror )  has 

been achieved without s ac r i f i c ing  anything i n  encoder com- 

p lex i ty  o r  I1quick-look1l capabi l i ty .  A t r u l y  surpr is ing re- 

sul t !  

Hence a substant ia l  gain 

Most of t he  codes presented i n  t h i s  section could have 

been e a s i l y  extended out t o  about m = 60. However m = 35 

seems t o  be a convenient length f o r  many applications.  

C. Performance of Codes with Sequential Decoding 

1. Brief Description of the  Simulated Sequential Decoder 

I n  order t o  test  the codes constructed i n  t h i s  chapter 

along w i t h  other known good codes, a sequential decoder was 

simulated on the Univac 1107 a t  the  University Computer Center, 

Two simulations w e r e  made, one €or a BSC and one f o r  a 

Gaussian channel. Each program consis ts  of four par ts :  a 

main program DECODE f o r  reading i n  data and pr in t ing  out re- 

s u l t s ,  a subprogram RANGEN f o r  generating random noise, a sub- 

program TABSET f o r  converting the  random noise i n t o  tabular  

form su i t ab le  f o r  t h e  sequential decoder, and a subprogram 

SECO f o r  the sequential  decoding algorithm, Special thanks 

a r e  due t o  D r ,  K. Vairavan, who programmed both the RANGEN 

and TABSET subprograms, t o  M r e  John G e i s t  and Mr. James Wruck 
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f o r  their  numerous contributions t o  t h e  eff ic iency of the 

programs, and t o  M r ,  J, ehang and M r ,  John Breiinan fo r  t h e  

preparation of the Gaussian program. 

Each subprogram was w r i t t e n  i n  assembly language t o  

make t h e  program a s  f a s t  a s  possible,  while the  main program 

was w r i t t e n  i n  FORTRAN t o  f a c i l i t a t e  the input-output, Input 

information needed f o r  the  operation of the  BSC program i s  

a s  follows ( f o r  a complete discussion of sequential decoding 

parameters and notation, see Gallager [ 251 ) : 

channel e r ro r  probabi l i ty  p; 

t h e  memory m of the code; 

the generator of t h e  code being tes ted;  

t h e  threshold increment H of the se- 

quent ia l  decoding search: 

a constant COkWET used t o  spread the 

difference between the m e t r i c  values: 

bins f o r  t h e  number of computations, 

R and the  metric values a r e  then compilted from p 

and CONMET, The threshold increment Ei used i n  t he  production 

runs w a s  determined experimentally, T h e  value of H which 

optimizes the bound on computation i s  known t o  be 2 131 

Since COYMET was chosen a s  8, the  lLoptimuml' H is 16, How- 

sver ,  through t e s t i n g  a s ing le  code f o r  d i f fe ren t  values of 

H,  it was determined t h a t  choosing H t o  be 32 was a better 

choice from both a computational and probabi l i ty  of e r r o r  

standpoint. These results a r e  shorn i n  Table 6 - 1 2 ,  

comp 
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EFFECT OF VARYING THE THRESHOLD INCREMENT H 

Code No. 1 Code Name  Minimum Weight Code 

Memory = 35 Rate = % Type Svs tema t i c  

Generator Sequences ( O c t a l )  : 400000000000 

651102104421 

Known Dis tance  P r o p e r t i e s  : 

dFD = 13 

Nature of Cons t ruc t ion :  Algori thm A I  

S imula t ion  Results: Total Error Erased 
H 4 Frames 1000 Frames 10 Frames 0 (1) Channel BSC: p = .033 - 

Tota l  Error  Erased  
H * Frames I O o o  Frames lo Frames - ( 2 )  Channel BSC: P = . O  33 

Total Error Erased  
H 16  Frames 1000 Frames 11 Frames 0 - ( 3 )  Channel BSC: p = .033 

Total  E r r o r  Erased  
( 4 )  Channel BSC: p .033 H 32 Frames 1000 Frames 16 Frames 0 

Total Error Erased  
( 5 )  Channel BSC: p = ,033 H 64  Frames 1000 Frames 26 Frames 0 

ComDutation: Total Error B i t s :  67 

T o t a l  Error  Erased  
H 128 Frames 1000 Frames 177 Frames 0 ( 6 )  Channel BSC: p = .033 - 
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Each production run consisted of 1000 frames of 256 

branches (blocks of information d i g i t s )  each f o r  a pa r t i cu la r  

code and a pa r t i cu la r  channel e r r o r  probabi l i ty  p. A frame 

was cu t  off and considered t o  be "erased" i f  it reached 

50,000 computations. I f  a frame was decoded perfect ly ,  it 

took (256 + m) computations since 256 information blocks gen- 

e r a t e  (256 + m) transmitted blocks and the  algorithm would 

count one computation f o r  each cor rec t ly  decoded block,, 

Hence the  computational b ins  a r e  j u s t  numbers inclusive be- 

tween (256 + m) and 50,000 which record how many frames 

reached or  exceeded t h a t  number of computations f o r  decoding. 

Usually 13 computational bins w e r e  chosen f o r  each produc- 

t i on  run. 

I n  the Gaussian prograa the  signal-to-noi se r a t i o  
b 

E - 
N 
0 

must be read i n  instead of p, w h e r e  Eb i s  the  energy per 

information d i g i t  and No i s  the noise power spec t ra l  density. 

Then t h e  procedure outlined i n  Jacobs [33]  i s  followed t o  

compute the metric values needed by the sequential decoder. 

Output information avai lable  from the BSC program i n -  

cludes the following: 

(1) 

(2)  f o r  each decoded frame: 

the ac tua l  branch metric values and Rcomp; 

(a) t he  number of computations; 

(b)l t he  number of decoding errors ;  

(c) the l a s t  branch decoded i f  the frame 

i s  erased; 
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(d) t he  received sequence; 

(e) t h e  decoded sequence; 

(3)’ f o r  the  e n t i r e  1000 decoded frames: 

(a) t h e  number of erased frames; 

(b)’ 

(c) the number of correct ly  decoded frames; 

(d) the d i s t r ibu t ion  of computation i n t o  

the  number of incor rec t ly  decoded frames; 

b ins ,  

Clearly the t o t a l  number of e r r o r  d i g i t s  can bt3 eas i ly  cal-  

culated from (2b)  e When the  number of compJtations reached 

50,000, decoding was terminated and the  frame declared 

I1erasedf1. The  output then recorded how f a r  the search had 

progressed i n t o  the  code tree when decoding was terminated. 

The pr in tout  of the received sequence and the  decoded se- 

quence f o r  each frame i s  optional i n  t h e  program. 

For each computational b in ,  the number of frames which 

reached o r  exceeded t h a t  amount of computation i s  recorded. 

For example, t he  b in  labeled 50,000 always contains the 

number of l1erased1’ frames, and the b in  labeled (256 + m) 

always contains the  t o t a l  number of frames, 

I n  the Gaussian program, addi t ional  output information 

about t h e  channel i s  avai lable ,  

I n  the RANGEM subprogram, a l i b r a r y  subroutine i s  used 

t o  generate a noise sequence distribdted according t o  the 

channel e r ro r  probabi l i ty  p f o r  the BSC program, I n  the  

Gaussian program, the noise sequence i s  distributed accord- 

ing t o  the quantized channel model given by Jacobs [ 3 3 ]  * 
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TABSET merely converts the noise sequence i n t o  tabular  data 

f o r  use by SECO. 

SECO i s  t h e  actual  sequential decoding algorithm. The 

version used i s  thoroughly discussed by Gallager [25] . 
flow chart  f o r  SECO i s  shown i n  Figure 6.7. It i s  always 

assumed t h a t  the al l -zero sequence has been transmitted. 

Since t h i s  was known t o  the  programmer, SECO was always 

biased t o  look ou t  on a 1 branch before looking out  on a 0 

A 

branch i n  case t h e  metric values on the two branches w e r e  

t ied.  ( H e r e  the discussiion per ta ins  only t o  R = - codes, 

i n  which there  a r e  only two branches emanating fron each 

node i n  the code tree.) This undoubtedly resu l ted  i n  s l i gh t -  

l y  more conputation than would be required normally, b u t  of 

course t h i s  deficiency was common t o  a l l  runs  and would be 

expected t o  have no e f f e c t  on the comparison between d i f f e r -  

en t code s. 

1 
N 

A computation was counted a s  a "forward look", l ee . ,  

every t i m e  t he  decoder looked forward on a branch, and a t  

no o ther  t i m e ,  a s ing le  computation was counted, Each com- 

putation, including t h e  calculat ion of the pa r i ty  d i g i t s ,  

took about 100 p s e c  of computer t i m e ,  

T h e  SECO algorithm is  capable of handling both system- 

a t i c  and non-systematic codes with m 2 72, Programs ac tua l ly  

avai lable  a r e  f o r  R = 1/2, R = 1/3, and R = 1/4 only, How- 

ever, only r e s u l t s  on R = 1 / 2  codes w i l l  be reported here, 

s i n c e  they a r e  su f f i c i en t ly  representat ive of a l l  ra tes .  
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LF  
on next 

LF = look forward 

T = threshold 

MF = move forward 

BB = best branch V = node value 

H = threshold increment 

LB = look back MB = move back 

WB = worst branch 

Fig. 6.7.  SECO flow char t .  
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Also, data was taken f o r  only three values of p and one 

value of -. These values a r e  very typ ica l ,  though, of 

a p rac t i ca l  randomly d i s t r ibu ted  space channel, For p = 

-033, i - e . ,  R = 1 / 2  = (0.9) Rcomp, each production run of 

1000 frames took about two minutes of computer t i m e .  For 

Eb 
NO 

p = -045, i . e - ,  R = 1 /2  = Rcomp, each run took about four 

minutes. For p = ,057, i - e , ,  R = 1/2 = (1,1) R , each 
comp 

EL 
run took about 20 minutes, 

run took about f i v e  minutes, 

And f o r  e = 2 o r  3 db, each 
0 

2. Comparative Analysis of Codes 

I n  Appcndix A char ts  a r e  given w h i c h  have complete 

information on 13 d i f f e ren t  codes, A name and number i s  

assigned t o  each code f o r  i den t i f i ca t ion  purposes, and the  

means of construction f o r  each code i s  b r i e f l y  explained. 

Simulation r e s u l t s  a r e  given f o r  the four channels des- 

cribed above. Not a l l  the codes w e r e  t e s t ed  w i t h  p = .057, 

s ince the computation t i m e  was so long, 

An i n t e re s t ing  comparison can be drawn between code 1 

(froin Algorithm A l )  and code 3 (from Algorithm A6) e Note 

t h a t  there a r e  fewer e r r o r  frames f o r  code 3, T h i s  appears 

t o  be due t o  the f a c t  t h a t  %REE i s  la rger  f o r  code 3 ,  

s ince  %D i s  the same f o r  both codes, and substant ia tes  

t he  previous statement t h a t  d i s  a more important param- 

eter than sD f o r  sequential  decoding. 
FREE 

Also compare code 11 (the non-systematic code from 

Algorithm A9) w i t h  code 1 2  (from Forney [ 28 ]  1,. The non- 

systematic code i s  c lear ly  superior i n  number of e r r o r  
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frames, although it has more erased frames, For the  nois i -  

est BSC, p = -057, code 11 makes no decoding e r r o r s  w h i l e  

code 1 2  incor rec t ly  decodes about 10 percent of t h e  frames, 

However code 11 erases  about 15 percent more frames than 

does code 1 2 ,  But of these frames it appears t h a t  about 

half of them were incor rec t ly  decoded by code 12 .  Massey 

[32]  has termed t h i s  a Ilfools rush i n  where angels f e a r  t o  

t read" phenomenon, The s l i g h t  computational advantage of 

code 1 2  over code 11 i s  c l ea r ly  due t o  t h i s  phenomenon. 

Since code 11 i s  more e a s i l y  implemented than code 1 2  and it 

has the  llquick-lookll property, t he  conclusion i s  t h a t  it i s  

f a r  superior t o  code 1 2  i n  system performance a s  w e l l  a s  

system complexity, I n  f a c t ,  code 11 did not make a s ingle  

decoding e r r o r  i n  a l l  four simulations, To the  au tho r ' s  

knowledge, code 1 2  i s  generally considered the  bes t  m = 35 

systematic code ava i lab le  f o r  sequential decoding, The per- 

formance of code I1 v e r i f i e s  the e a r l i e r  statement t h a t  

b e t t e r  r e s u l t s  can be obtained f o r  non-systematic codes than 

f o r  systematic codes when used with sequential decoding (s ince 

more f r e e  distance i s  ava i lab le  f o r  non-systematic codes) e 

Fina l ly ,  compare the  performance of code 2 with code 1, 

This ind ica tes  the  advantage of using longer codes, However, 

encoder complexity increases with code length, which i s  an 

important consideration i n  many applications,  



V I 1  e Dleriving Good Convolutional-. Codes 

from Cyclic Codes 

For completeness, th is  chapter w i l l  summarize a t -  

tempts t o  derive good convolutional codes from good block 

codes, or a t  Peast t o  bound the distance of a convolu- 

t i ona l  code from known distance bounds on block codes. 

Some of these attempts have been qyite successful,  such a s  

the codes due t o  M c E l i e c e  [ l o ]  presented i n  Section V I I . A ,  

o thers  r e l a t ive ly  unsuccessful, such a s  those i n  Section 

V I I . B ,  but s t i l l  of some i n t e r e s t  f o r  their s t ructure ,  In  

Section VE1,D a possible  new approach t o  this problem i s  

discussed, and some l imi ta t ions  inherent i n  deriving con- 

volutional codes from block codes a r e  given i n  Section V1I.E.  

I n  Section V I 1 . C  a method i s  presented f o r  converting a code 

described by a parity-check matrix i n t o  a r a t iona l ly  equiva- 

l e n t  generator matrix which i s  then reduced t o  Forney’s [ 6 ]  

canonic generator ma t r ix ,  

A. M c E l i e c e ’  s Codes 

The following r e s u l t  was obtained by M c E l i e c e  [lo] f o r  

f ixed R = 1/2 systematic codes only, I f  g(x) i s  the gen- 

e ra to r  of a cyclic code w i t h  minimum distance d and h(x) i s  

the dual generator of g(x) w i t h  minimum distance , then 
g 

TI 
the  fixed R = 1/2 systematic code with G(2’ (D) = g ( D )  has  

!FREE - > min [ 1 + dg, 2 + 411 
Note t h a t  i n  order t o  assure a l a rge  free distance a 

cyc l ic  code must be chosen w h i c h  has a l a rge  minimum distance 

152 
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and whose dual code a l so  has l a rge  minimum distance. Hence 

very low r a t e  cyc l ic  codes a r e  not a good choice, since 

t h e i r  dual generators have very l o w  distances, 
2 5 8 11 L e t  g(x) = 1 + x + x + x + x9 + xlO+ x . +  

12 x , t h e  dual generator of the  Golay code, Then d = 8, 

h(x) = 1 + x + x + x + x + x l 0  + x 
g 

2 4 5 6 11 , and dh = 7, Hence _ _  
2 5 + D the  f ixed  R = 1/2  systematic code with G(2 '  (D] = 1 + D 

8 9 1 2  
+D + D + Dl0 + D l l  + D has dFREE 2 9, Since the  weight 

4 
L e t  g(x1 = 1 + x + x  5 + x  9 + x  l 0 + X  11 + x  1 3  

1 4  1 6  1 7  18 2 1  22  + x 23 , t he  gener- + x  + x  + x  + x  + x 2 0 + x  + x  

a to r  of an R = - 24 cyc l ic  code. 

x + x  + x  + x  + x  + x  
47 

8 9 11 1 2  15 18 

d = 11, h(x)  = 1 + X 4 + x 5 + 
rr 

24 
Y 

20 23 + x  + x  + x  , a n d % = 1 2 -  

Therefore the  f ixed R = 1/2  systematic code with G(2' (D) = 

g(D): has dFREE - > 1 2 .  B u t  s ince a l l  pa r i ty  sequences E pro- 

duced by an information sequence x with x 

weight a t  l e a s t  11 o r  x has weight a t  l e a s t  12 and 2 has weight 

# 0 e i t h e r  have 
0 

a t  l e a s t  2, t he  only possible weight 1 2  codeword i s  produced 

by t h e  information sequence 3 = [ l , O , O ,  ...I . But this code- 

% > 13, Also t he  only possible word has weight 16 ,  Hence 

codewords of weight 1 3  a r e  those with weight 2 information 
REE - 

sequences, B u t  it can e a s i l y  be shown t h a t  no information 

sequences of weight 2 can produce a codeword of weight 13, 

2 1 4 ,  But i f  t he  sequence whose transform is  h(D) Hence ?FREE 
i s  chosen a s  the  information sequence, a codeword of weight 

1 4  i s  obtained, Therefore dFREE = 14-1 
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These codes a r e  comparable t o  those constructed i n  

Chapter V I ,  and it appears t h a t  long medium r a t e  cyc l ic  

codes with good distance propert ies  w i l l  produce good 

f ixed R = 1 / 2  systematic convolutional codes f o r  sequen- 

t i a l  decoding, 

McEliece’s r e s u l t  w i l l  now be extended t o  t h e  i m -  

por tant  c l a s s  of f ixed R = 1 /2  non-systematic codes and 

a l s o  t o  f ixed R = 1/3 systematic codes. L e t  g(x) and h(x) 

be two r e l a t ive ly  prime polynomials such t h a t  g(x) 

h(x) = x -1, Clearly g(x) and h(x) each generate a cyc l ic  

code of length n, and they a r e  each o t h e r ’ s  dual genera- 

t o r s ,  L e t  d be the  minimum distance of the  cyc l ic  code 

generated by g(x) and l e t  % be the  minimum distance of t h e  

cyc l ic  code generated by h ( x ) .  

n 

g 

Now consider t he  f ixed R = 1/2 non-systematic convolu- 

t i o n a l  code with G ( l ’ ( D )  = g(D) and G ( 2 )  (D) = h(D). 

the  Euclidean divis ion algorithm on an a rb i t r a ry  informa- 

t i o n  sequence x whose transform is  x(D) implies t h a t  

Using 

y ( ”  (D) = x(D) G(2)1 (E>) = q2(D)  (Dn-l) + 

and, s ince the remainder cannot have higher 

dividend a f t e r  divis ion by Dn-1 f o r  any n,  

the 
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r -7 

where the Hamming w e i g h t  of a polynom.ia1 i s  defined t o  be 

the n u m b e r  of non-zero terms i n  the polynomial. Then, s ince 

degree [r l (D)]  < degree [ h ( D ) ]  and degree 

[ g ( ~ ] ]  

w e i g h t  a t  l e a s t  41, and 

, r l ( D )  g ( D )  has weight a t  l ea s t  d r 2 ( D )  h (D?  has 
g’ 

> d  + %  d~~~~ - g ( 1 5 3 1  

un less  r (D) = 0 ,  r 2 ( D )  = 0 ,  or  r (D) = r 2 ( D )  = 0. 1 1 

A s s u m e  r (D) = 0 ,  r 2 ( D )  # 0. Then wH [ y ( 2 1 ( D J ]  2 % 

H 

1 
n and w [y‘ l ’  (D)] 2 2 since a l l  m u l t i p l e s  of D -1 m u s t  have 

w e i g h t  a t  l e a s t  2. H e n c e  

%REE ’ + dh 
A s s u m e  r l ( D )  # 0 ,  r 2 ( D )  = 0. S imi la r ly  

> 2 + d  
!FREE - g 

( 1 5 5 1  

and 

y(’) (D) = f (D) g ( D )  (Dn-l) 

y ( 2 ’  (D) = f (D) h ( D )  (Dn-l)  

Again us ing  the E u c l i d e a n  algorithm, l e t  
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and 

w [Y( l ’  (D)] 2 2d since degree [R2(D) g(D)] < n 

w H [Y(2) (D)] 2 243. since degree [R1(D) h(D]] < n 
(161) H 4 

implies t ha t  

A s s u m e  R1(DY = 0 ,  R2(D) # 0. Then 

I f  R (D) # 0, R2(D) = 0,  then 1 

And if R ~ ( D )  = R2(D) = 0 ,  then f (D) = g ( D )  Q,(D) = h ( D )  

and 

y(’’ (D) = F ( D )  g (D)  (D2n-l)  

( 2) 2n 
y (D) = F ( D )  h ( D )  (D -1). 

A g a i n  applying the E u c l i d e a n  algorithm, F ( D )  can be 

wr i t t en  a s  
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n 

(169) 

n 3  3n Since (D -1) # D -1, it i s  not immediately c l ea r  how t o  

i n  t h i s  case, However, a s  i s  shown i n  Appendix 
bound %REE 
B, i f  

f o r  any pos i t ive  integer  k, then 

This proves the following r e su l t .  wH where L = 

Theorem 7.1 

codes defined above, %REE 2 2 + m i n  

For t h e  c l a s s  of f ixed R = 1/2 non-systematic 

Note t h a t  there  i s  very l i t t l e  improvement over t he  R = 1/2 

systematic codes . 
Now consider t h e  f ixed R = 1/3 systematic convolutional 

code with G ( l ’  (D) = 1, G ( 2 )  (D) = g(D), and G ( 3 )  (D) = h(D). 

Following the  same l i n e  of proof used t o  derive theorem 7.1 

and again employing the  r e s u l t s  of Appendix B, it i s  easy t o  

a r r ive  a t  t h e  following r e su l t .  

Theorem 7.2 For the  c l a s s  of f ixed R = 1/3 systematic con- 

volutional codes defined above, %REE - > 2 + m i n  
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Example 7 .3  Again consider the  Golay code and l e t  

G ( l )  (D) = 1, G(2) (D) = 1 + D + D + D + D + DIO + D , and 

G(3) (D) = 1 + D 

2 4 5 6 11 

lo + Dll + D . Then + D8 + D9 + D 1 2  2 5 + D 
%REE ' 16*1 

The extension of these r e s u l t s  t o  other  r a t e s  appears t o  

Furthermore, R = 1/2 and R = 113 be unrewardingly tedious. 

codes a r e  of the most p rac t i ca l  interest .  Equation (149) and 

theorem 7.2 guarantee t h a t  good long f ixed  R = 1/2 and R = 1/3 

systematic codes can be found f o r  use with sequential  decod- 

ing. The r e s u l t  of theorem 7 . 1  f o r  f ixed R = 1/2 non-system- 

a t i c  codes , however, i s  somewhat disap,pointing. 

B. Wyner-Sullivan Codes 

A c l a s s  of very high r a t e  f ixed codes with dFD = 5, 

based on the  s t ruc tu re  of BCH codes, was discovered by Wyner 

[ 3 4 ]  . Sullivan [35] has introduced simple encoding and a l -  

gebraic decoding procedures f o r  these codes and has shown 

tha t  they do not exhiDit t he  e r ro r  propagation e f f e c t  [36] 

charac te r i s t ic  of cer ta in  convolutional codes. 

Consider a par i ty  check matrix of t h e  following form: - 
N - 1  N-2 

U a ..- a 

0 0 0 . .  0 

0 0 e.. 0 

0 0 ... 0 

. 

1 0  0 e.. 

N - 1  .N-2 l a  e.. 

3 N - 1  3 N-2 0 (a 1 (a  ) ..- 
0 0  0 * e .  

0 0  0 e - .  

- 0  0 . e *  

. 
O .  

- 
0 0 

a 1 e e g  

a 1 . e .  

0 0 
0 0 

0 0 

3 
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r where a i s  a primitive element of GF(2 1. Since each power 

of a can be expressed a s  a binary r- tuple ,  each successive 

block of par i ty  check d i g i t s  i s  sh i f ted  down r rowso Hence 
r there  a r e  r pa r i ty  checks per t i m e  u n i t  and 2 - 1 d i s t i n c t  

Y 

non-zero p o w e r s  of a. Therefore N-K = r and R = . 
2 -1 

The convolutional code defined by an E matrix i s  taken 

t o  be precisely the  set of sequences i n  the  nul l  space of 

a , and no other  sequences, 

a l l  t h e  convolutional codes i n  t h i s  c l a s s  by noting t h a t  the 

T Wyner showed t h a t  %D = 5 f o r  

f i r s t  2 r  rows of (172) a r e  a l so  a pa r i ty  check matrix f o r  a 

double e r ror  correcting BCH code. ( Wyner and Ash [37] have 

defined "l;lD a s  the  m i n i m u m  number of columns of which can 

add t o  zero, including a t  l e a s t  one column from the f i r s t  

block. ) 

T h e  decoder looks a t  three blocks of syndrome d i g i t s  before 

estimating a block of e r ro r  d ig i t s .  Hence the decoding mem- 

ory Fii = 2 and the  decoding constraint  length E = 3N = 3 
A 

(2r- l )  . Clearly a s  r 4 0, R +. 1 and i n  the l i m i t  i n f i n i t e  

constraint  length R = 1 codes with dFD = 5 a re  approached. 

Sullivan [35] has shown t h a t  dFD f o r  a l l  these codes l ies 

w e l l  above t h e  non-asymptotic G i l b e r t  lower bound on %ne 
The chief disadvantage of the  Wyner-Sullivan codes i s  

tha t  no method has ye t  been found t o  extend the  r e s u l t s  t o  

other than fii = 2,  sD = 5 codes, 

limitatgon on the usefulness of the codes, 

Clearly t h i s  i s  a serious 
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C. Forney Canonic Form 

Forney [ 6 ]  has  out l ined an i n t e r e s t i n g  procedure f o r  

converting an encoder i n t o  what he c a l l s  a minimal canonic 

encoder, w h i c h  i s  r a t iona l ly  equivalent t o  the or ig ina l  en- 

coder. An example w i l l  be given f o r  t h e  Wyner-Sullivan code 

w i t h  r = 3 which i s  described by the following pa r i ty  check 

matrix: 

1 1 1 0 1 0 0  

0 1 1 1 0 1 0  

1 1 0 1 0 0 1  

1 0 1 1 1 0 0 1 1 1 0 1 0 0  

1 1 1 0 3 1 0 0 1 1 1 0 1 0  

4 H- = I o  0 1 0  1 1  1 1  1 0  1 0  0 1 

0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0  

0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0  

0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 1  1 
4 

This i s  an R = 7 code w i t h  dFD = 5, = 2, and = 21. A 

T h e  f i r s t  s t e p  i s  t o  w r i t e  the parity-check matrix E 

a s  an (N-K) x N matrix of parity-check functions H(D) e This 

r e s u l t s  i n  the following matrix: 

T 
_I H (D] = 

1+D 
1 
1+D 
D 
l+D 
0 

D 
1+D 
1+D 
1 
0 
1+D 
0 

1 
1 
D 
1 
D 
D 
1+D 



161 

Then convert H(D) i n t o  canonic systematic form by performing 

elementary column operations on fl (D): which do not change T 

- G(D) = 

i t s  n u l l  space. T h i s  r e s u l t s  i n  the following matrix: 

r 

(17 6 )  

- 

1 0 0 0 1  D / ~ + D  l / l + D 2  

0 1 0 0 1/1+D 1 ~ + D + D ~ / ~ + D  

0 0 1 0 1  1 D / ~ + D  

o o o 1 D / ~ + D  l / l + D  1 

1 D / ~ + D  l / l + D 2  
2 

l / l + D  1 l+D+D /1+D 

- G(D)  = 

1 1 D / ~ + D  

'-l+D2 0 0 0 1+D2 D + D ~  1 

0 1+D2 0 0 1 +D i + ~ ~  ~ + D + D ~  
(177): 

0 0 1+D 0 1+D l + D  D 

0 0 0 1+D D 1 1+D 

D / ~ + D  1/1+D 1 

1 0 
0 1 
0 0 

0 
0 
1 

* 

Multiplying each row of G(D) by the l e a s t  common mult iple  

I n  Forney' s [ 61 procedure, the g rea t e s t  common denomina- 

t o r  of the determinants of a l l  the K x K s u h a t r i c e s  of G(D) 



1 6 2  

2 i s  calculated. T h i s  i s  found t o  be (l+DF Then a ra t ion-  

a l l y  equivalent matrix which i s  a bas i s  f o r  the row space 

of the above matrix can be constructed, This leads t o  the 

following matrix: 

1+D 1+D 0 0 D 1 D 

0 1 + D  1 0 0 D 1+D 

0 0 1+D 0 1+D 1+D 0 

0 0 0 1 +D D 1 1+D 

F ina l ly  G(D) i s  converted t o  what Forney [6 ]  c a l l s  t he  mini- 

mal canonic matrix w h i c h  i s  r a t iona l ly  equivalent t o  each 

of t h e  above matrices. This r e s u l t s  i n  t h e  following matrix: 

1+D 0 1 0 D 1+D 1 

0 1+D 1 0 0 D l + D  

0 0 1 +D 0 1 +D 1 +D D I 0 0 0 1+D D 1 1+D 

- G(D) = 

Note t h a t  Forney's canonic form does not necessarily mean 

the  code i s  i n  systematic form. 

Hence the Wyner-Sullivan code with r = 3 has a ra t ion-  

a l l y  equivalent encoder w i t h  encoding memory m = 1 and en- 

coding cons t ra in t  length nA = 14. 

c i r c u i t  for the code can be implemented with only one-stage 

s h i f t  reg i  sters . 

Therefore the encoding 
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D. Codes Dependent on the  Length of Information 

Sequence Bound 

I n  Section VIIoA, it was shown t h a t  the f r e e  distance 

of ce r t a in  convolutional codes depends on the  cyc l ic  code 

propcrt ies  of t h e  polynomials i n  the  matrix S ( D )  e 

sect ion a d i f f e ren t  view of t h i s  re la t ionship  w i l l  be taken, 

Consider an R = 1 / 2  systematic f ixed code with g =[T&:s] , 

In  t h i s  

where i s  a semi-infinite i den t i ty  matrix and 

Note t h a t  (180) truncated a f t e r  k rows could 

a s  t h e  generator matrix of an (n,k) cyc l i c  code. 

(180) 

also serve 

Theref ore  

if the  length of t he  information sequence needed t o  produce 

the  shor tes t  minimum f r e e  weight codeword i s  known t o  be 

less than o r  equal t o  k, of t h e  cyc l i c  code provides a 

lower bound on dFREE of t h e  convolutional code, 

t h e  length of information sequence bound w e r e  known t o  be m 

%D for f o r  R = 1/2 f ixed  systematic codes ( c f ,  Chapter VI, 

a l l  cyc l i c  codes with generator g(x) and R > 1/2 would 

provide a lower bound on dFREE f o r  t h e  f ixed R = 1 /2  system- 

a t i c  convolutional code with G ( 2 )  (D) = g(D). 

Hence i f  

This would 
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mean t h a t  t he  BCq bound on m i n i m u m  distance [39] could be 

applied t o  convolutional codes a s  w e l l  a s  t o  block codes. 

B u t ,  of course, t h i s  conjecture has y e t  t o  be proved. 

E. Some Upper Bounds on Free Distance 

Besides providing lower bounds on t h e  distance pro- 

p e r t i e s  of ce r t a in  convolutional codes, cyc l ic  codes a l so  

provide upper bounds on distance f o r  ce r t a in  convolutional 

codes (. 

Theorem 7 3 Given an R = 1/2  systematic fixed code w i t h  

G(')(D) = G(D) = 1 + glD + .(.- I- D and wH [G(D)] >. 2, then 
m 

where H(D) i s  the lowest degree polynomial such t h a t  H(D] 

G ( D )  = D~ - 1. 
Proof 

(1) L e t  3 be the information sequence whose transform 

i s  H(D] a Clearly ho = 1 and w H ( [ h  G ]  = 1 + 
, m  - 

w (h) . Therefore d = % 5 1 + wH LH(D)] . 
33 FD 

, 
c$ REE - < 2 + W H  

Theorem 7 . 3  ind ica tes  t h a t  generators of low r a t e  cyc l i c  

codes make poor choices of G(2' (Dl f o r  R = 1 / 2  systematic 

f ixed codes. However, since t h e  maximal length polynomials 

a r e  "pseudo random" , it might be infer red  t h a t  they would 
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make very good choices f o r  G ( ”  (D) hecause Shannon [31] 

showed t h a t  a randomly constructed code has a very high 

probabi l i ty  of being a good code, Example 7.4 w i l l  prove 

t h i s  conjecture t o  be incorrect ,  However the  distance pro- 

p e r t i e s  of the  other  pseudo random” generator sequences 

a r e  s t i l l  open t o  invest igat ion,  

Example 7 .4  

codes with G(2’  (DJ = g(DF, where g(x) i s  the generator of a 

maximal length code, given i n  Table 7 ,1 ,  

Consider the  c l a s s  of R = 1/2 f ixed systematic 

TABLE 7.1 

Rate of the Maximal 

2/ 3 

3/7 

4/15 

5/31 

6/63 

7/127 

Memory of the 
Convolutional Code 

1 

4 

11 

26 

57 

120 

Upper Bound on 
t h e  Free Distance 

5 

6 

7 

8 

9 

10 

Clearly,  the  convolutional codes ge t  very bad a s  the  r a t e  

of t h e  maximal length codes decreases. 1 
Now a theorem w i l l  be given whose proof i s  s imilar  t o  

the  proof of theorem 7.3(2) ,  and hence w i l l  be omitted, 

Theorem 7.4 

G ( 2 )  (D) = G(D)  + L ( D ) ,  where G(D) i s  a polynomial and 

Given an R = 1 /2  systematic fixed code with 
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L(D)  i s  a very low weight polynomial, then tf$REE 5 2 + 
\wH [L(DI] + 1 1 wH [H(D)] I w h e r e  H(D) i s  the lowest de- 

gree polynomial such t h a t  G(D)  H(D) = Dn - l, I 
Theorem 7.4 provides a t i g h t  bound on %REE for those codes 

whose generator i s  very close t o  the  generator of a code 

t i g h t l y  bounded by theorem 7 - 3 ,  

The results of theorem 7 - 3  and theorem 7-4 can be ex- 

tended t o  f ixed systematic codes of a l l  r a t e s  and t o  f ixed 

non-systematic codesI b u t  the bounds a r e  the t i g h t e s t  i n  

the R = 1/2 systematic case, 



V I I I ,  Summary, Conclusions, and Recommendations 

f o r  Further Research 

I n  Chapter I ,  the formalism f o r  convolutional encod- 

ing was introduced and various problems associated w i t h  

convolutional codes w e r e  discussed, Two d i f f e ren t  nota- 

t i o n a l  systems w e r e  presented, t h e  D-transform approach 

introduced by Massey [ 4 ]  and extended by Forney [6 ]  , w h i c h  

i s  used only f o r  f ixed codes, and an extension of the vec- 

t o r  notation of Wozencraft and Reiffen [ 3 ]  , which i s  used 

f o r  both f ixed and time-varying codes, 

From Chapter I1 onward, only binary codes, i -e . ,  codes 

defined over GF(2), wzre considered, primarily f o r  conven- 

ience since many of the r e s u l t s  a r e  eas i ly  extended t o  non- 

binary codes. I n  Chapter 11, feedback decoding m i n i m u m  

dis tance,  d e f i n i t e  decoding minimum distance,  f r e e  distance,  

and reverse distance w e r e  defined f o r  both fixed and period- 

i c  codes, Also two new distance measures, column distance 

and row distance w e r e  introduced, 

i s  a more appropriate distance measure f o r  sequential de- 

coding than 

era1 de f in i t i on  of d e f i n i t e  decoding minimum dis tance,  va l id  

It was claimed t h a t  dFREE 

, a f a c t  ve r i f i ed  i n  l a t e r  chapters, A gen- 
%D 

f o r  systematic and non-systematic codes of a l l  r a t e s ,  is  

s t i l l  being sought. I n  Chapter I V ,  it was necessary t o  give 

an a l t e r n a t e  de f in i t i on  of %,, and d.,,D i n  order t o  obtain a 

lower bound on “bD €or non-systematic per iodic  codes, 

167 
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I n  Chapter 111, a new def in i t ion  of encoder equiva- 

lence,  ca l led  causal equivalence, was given w h i c h  not  only 

guarantees t h a t  t h e  encoders produce the  same output se- 

quences, but tha t  they have the same column dis tance proper- 

t ies  when only causal information sequences a r e  allowed. 

This i s  s l i g h t l y  d i f f e ren t  f r o m  Forney's [ 61 defini t ion,  

termed ra t iona l  equivalence here, where two equivalent en- 

coders can have d i f f e ren t  values of column distance. Then 

a method was given whereby a non-systematic encoder with no 

causal ly  equivalent systematic encoder can be simply con- 

ver ted t o  a systematic encoder without decreasing column 

distance. Such an encoder i s  ca l led  causally dominant t o  

the o r ig ina l  encoder. Hence systematic encoders a r e  always 

a s  good a s  non-systematic encoders a s  f a r  a s  dis tance pro- 

pertiies a r e  concerned, However, i f  a non-systematic poly- 

nomial encoder i s  converted t o  a causal ly  dominant o r  a 

causal ly  equivalent systematic encoder with r a t iona l  func- 

t ions and then each generator function i s  truncated t o  pre- 

is  preserved but dFREE i s  %D serve the encoding memory, 

not. Final ly ,  general parity-check matrices and syndrome 

forming c i r c u i t s  w e r e  obtained f o r  non-systematic encoders 

of a l l  ra tes .  

I n  Chapter I V ,  bounds w e r e  obtained on various dis tance 

measures, 

t i c  and non-systematic per iodic  codes, It  i s  conjectured 

t h a t  these bounds hold a l so  f o r  f ixed codes, but  t h i s  remains 

A lower bound on %D was shown f o r  both systema- 

was given f o r  a %D unproved, Also a G i l b e r t  lower bound on 



169 

simply implemented subclass of per iodic  codes with period 

T = 2m + 1. 

non-systematic per iodic  codes, and the r e s u l t  was used t o  

prove an upper bound on e r r o r  probabi l i ty  fo r  maximum l ike -  

lihood decoding over a BSC which i s  superior t o  V i t e r b i ' s  [ 2 ]  

upper bound f o r  low r a t e s  and which m e e t s  V i t e r b i ' s  lower 

bound a t  R = 0 ,  

which i s  e s sen t i a l ly  the  same a s  M c E l i e c e  and Rumsey's [lo] 

bound f o r  f ixed R = - systematic codes was a l so  shown, It 

was indicated how t h i s  r e s u l t  can a l so  be extended t o  per- 

i od ic  codes, F ina l ly ,  a G i l b e r t  lower bound on a simply 

implemented subclass of f ixed  R = 1 1 2  non-systematic codes 

was obtained. However, a complete set of bounds on t h e  

distance propert ies  of convolutional codes, most noticeably 

a Hamming upper bound on %.,, i s  s t i l l  missing. 

A strong lower bound on dFREE was obtained f o r  

An upper bound on dFREE f o r  a l l  f ixed codes 

1 
N 

A major consequence of the r e s u l t s  of Chapter I V  was 

the demonstration t h a t  more f r e e  distance i s  avai lable  from 

non-systematic codes than from systematic codes of the  same 

length. Hence it was conjectured t h a t  non-systematic codes 

would perform better with sequential  decoding than systema- 

t i c  codes of t h e  same constraint  length,  a f a c t  ve r i f i ed  

experimentally a s  reported i n  Chapter V I ,  

I n  Chapter V ,  some p a r t i a l  r e s u l t s  w e r e  presented on 

the  s t i l l  outstanding problem of bounding the length of t he  

information sequence needed t o  produce t h e  m i n i m u m  f r e e  

weight codeword. Also some methods of calculat ing t h e  f r e e  
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distance were given, a problem which would be grea t ly  simpli- 

f i e d  by obtaining a t i g h t  length of information sequence 

bound. 

I n  Chapter V I ,  simple and e f f i c i e n t  algorithms w e r e  

given f o r  constructing f ixed systematic convolutional codes 

with %D considerably l a rge r  than t h e  non-asymptotic Gilber t  

lower bound out t o  m = 71 f o r  R = 1/2, and m = 35 f o r  R = 1/3 

and R = 1/4. The algorithms always retained the property 

of minimizing the  number of modulo-2 adders needed i n  t h e  

obvious encoding c i r c u i t  f o r  codes of a given length and 

m i n i m u m  distance,  an important consideration i n  many appli-  

cations., I n  addition, an algorithm f o r  constructing f ixed  

systematic R = 1/2  codes w i t h  known d was presented. 
FREE 

Other algorithms f o r  constructing R = 112 f ixed codes 

which do not minimize the number of modulo-2 adders i n  the 

encoding c i r c u i t  w e r e  a l so  given, I n  pa r t i cu la r  a construe- 

t i o n  algorithm was presented fo r  the c l a s s  of f ixed  R = 1/2 

non-systematic codes f o r  which a G i l b e r t  lower bound was 

obtained i n  Chapter I V .  These codes have been shown by 

Massey [32] t o  possess t h e  llquick-looklt property of systema- 

t i c  codes, and t o  have a very simple encoding c i r c u i t .  T h e  

code of t h i s  type which was constructed was shown t o  have 

a very la rge  

systematic code, A very strong r e s u l t  would be obtained i f  

any of the algorithms presented i n  Chapter V I  could be shown 

, a consequence of i t s  being a non- 
!FREE 

t o  produce good codes of a r b i t r a r y  length. 
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Fina l ly ,  

t i a l  decoding 

of sequential  

memory 35 was 
‘I\ 

E 
u 

with - = 2.0 
NO 

a br ief  descr ipt ion of t h e  simulated sequen- 

program was given, and a comparative ana lys i s  

decoding performance f o r  various codes w i t h  

presented, Four channels, a Gaussian channel 

and three BSC’s w i t h  R = 1/2 = 0.9 R 
comp’ 

R = 1/2 = R 

simulated. 

superior t o  a l l  the other  codes t e s t ed  a s  regards system 

performance, Indeed it d id  not make a s ing le  decoding e r r o r  

over any of the four  simulated channels. T h i s  was due, of 

course, t o  t he  advantage i n  f r e e  distance which non-systema- 

t i c  codes possess over systematic codes. A l s o ,  because of 

i t s  simple implementation, it was very desirable  a s  f a r  a s  

system complexity i s  concerned. 

, and R = 1/2 = 1-1 Rcomp, respectively,  w e r e  comp 
The  f ixed R = 1 /2  non-systematic code was f a r  

I n  Chapter V I I ,  McEliece’s [lo] r e s u l t  obtaining f ixed 

from cyc l i c  codes R = 112 systematic codes w i t h  l a rge  d 

was extended t o  f ixed R = 1/3 systematic codes and f ixed 

R = 1/2 non-systematic codes. The r e s u l t s  f o r  the l a t t e r  

case w e r e  disappointing, but good f ixed R = 1/3 systematic 

codes w e r e  found, Some codes discovered by Wyner 1341 and 

Sullivan [ 35 1 were presented v i a  the parity-check matrix, and 

a method was given f o r  converting a parity-check matrix i n  

non-systematic form i n t o  a r a t iona l ly  equivalent generator 

matrix. However the  codes considered have not been gener- 

a l i zed  beyond E = 2 and %,, = 5. A new approach t o  con- 

s t ruc t ing  good convolutional codes from cyclic codes was 

introduced, but it was seen t o  depend on proving a t i g h t  

FREE 
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length of information sequence bound, Final ly ,  some limita- 

t i ons  on constructing convolutional codes from block codes 

w e r e  presented. The problem of finding some construction 

technique which y i e lds  good codes a s  the memory ge t s  arbi-  

t r a r i l y  large remains unsolved fo r  convolutional codes, a s  

indeed it i s  s t i l l  unsolved f o r  block codes, 
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1 Code No. Code N~~~ Minimum Weight Code 

Memory = 35 Rate = % Type Sys tema t i c  

Genera tor  Sequences ( O c t a l ) :  400000000000 

651102104421 

Known Dis tance  P r o p e r t i e s :  

dFD = 13 = 1 3  dFREE 

Nature of Cons t ruc t ion :  Algori thm A 1  
\ 

Simula t ion  R e s u l t s :  Total  E r ro r  Erased  
E 'N = 2 ' o  H 32 Frames1000 Frames 1 6  Frames 3 (1) Channel Gauss: b 0 - 

Erased  0 
Total  Error  

( 2 )  Channel BSC: P E -033 H - 32 Frames loo0 Frames l6 Frames 

Total Error  Erased  
( 3 )  ChannelBSC: P = ,045 H 32 Frames1000 Frames 73 Frames 1 

Total Error Erased  
( 4 )  Channel BSC: P -057 H - 32 Frames1000 Frames 428 Frames 9 

Commtat ion:  T o t a l  E r r o r  B i t s :  6406 

T o t a l  Error Erased  
( 5 )  Channel H Frames Frames Frames 

T o t a l  Error  Erased  
( 6 )  Channel H Frames Frames Frames - 
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Code No. 2 Code N a m e  Minimum Weight Code 

Memory = 7 1  Rate = ’/i Type Sys tema t i c  

Generator  Sequences (Octal): 400000000000000000000000 

651102104421022041101101 

Known Dis tance  P r o p e r t i e s :  

= 21 d~~ d~~~ = 21 

Nature  of Cons t ruc t ion :  Algori thm AI 

Simula t ion  R e s u l t s :  - T o t a l  E r r o r  Erased  
(1) Channel Gauss: Eb’No - 2 ’o  H 32 Frames 1000 Frames 9 Frames 4 

p_ 

T o t a l  Error Erased 
H 32 Frames l o o 0  Frames 11 Frames 0 
I_ 

( 2 )  Channel BSC: P = -033 

T o t a l  E r r o r  Erased 
( 3 )  Channel BSC: D = . o m  H 32 Frames 1000 Frames 62 Frames 1 

T o t a l  Error Erased 
( 4 )  Channel H Frames Frames Frames - 

T o t a l  Error Erased 
( 5 )  Channel H Frames Frames Frames - 

T o t a l  Error Erased 
( 6 )  Channel H Frames Frames Frames 

q_ 
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Code No. 3 Code Name Minimm Free  We:Fht CO& 

Memory = 35 Rate = % Type Svs tema t i c  

Genera tor  Sequences ( O c t a l ) :  400000000000 

732460703401 

Known Dis tance  P r o p e r t i e s :  

dFD = 1 3  

Nature of Cons t ruc t ion :  Algori thm A 6  

S imula t ion  R e s u l t s '  T o t a l  E r r o r  Erased 
( 1 )  Channel Gauss: 'Eb'No =2 'o  H 32 Frames 1000 Frames 5 Frames 1 

H 32 Frames 1000 Frames 1 Frames 0 - ( 2 )  Channel BSC: p = .033 

( 3 )  Channel BSC: p .045 H 32 Frames 1000 Frames 17 Frames 3 

T o t a l  E r r o r  Erased 
(4) Channel P = -057 H 32 Frames loo0 Frames 234 Frames 33 

Total E r r o r  Erased 
( 5 )  Channel H Frames Frames Frames - 

T o t a l  E r r o r  Erased 
( 6 )  Channel H Frames Frames Frames - 
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Code N o ,  4 Code N a m e  Minimum Free  Weight Adjo in t  

Memory = 35 Rate = 4 T y p e  Sys t ema t i c  

Generator  Sequences ( O c t a l ) :  400000000000 

65 3110 16 2117 

Known Dis tance  P r o p e r t i e s :  

dFD = 1 3  d~~~ = 1 8  

Nature of Cons t ruc t ion :  Adjo in t  of  code 'no .  3 

S imula t ion  R e s u l t s :  E /N = 2.0  Total  Error Erased 
( 1 )  Channel. Gauss: b o 32 Frames 1000 Frames 3 Frames 4 - 

T o t a l  E r r o r  Erased 
( 2 )  Channel BSC: p = .033 H 32_ Frames 1000 Frames o Frames 0 

T o t a l  E r r o r  Erased  
(3) Channel BSC: D = .OM H 32 Frames 1000 Frames 6 Frames 4 

T o t a l  E r r o r  Erased 
( 4 )  Channel H Frames Frames Frames 

T o t a l  Error Erased  
( 5 )  Channel H Frames Frames Frames - 

T o t a l  E r r o r  Erased 
( 6 )  Channel H Frames Frames Frames 

ComDutation : T o t a l  E r r o r  B i t s :  
- 
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Code No. 5 Code Name Maximum Weight Code 

Memory = 35 1 Rate = 5 Type Sys tema t i c  

Genera tor  Sequences ( O c t a l ) :  400000000000 

736677773575 

Known Dis tance  P r o p e r t i e s :  

= 13 d~~ = 16 d~~~ 

Nature of Cons t ruc t ion :  Algorithm A7 

Simula t ion  Results:  - T o t a l  Error Erased  
(1) Channel Gauss: Eb’No - 2.0 H 32 Frames 1000 Frames 3 Frames 2 - 

T o t a l  E r r o r  Erased  
( 2 )  Channel BSC: p = ,033 H - 32 Frames 1000 Frames 0 Frames 0 

T o t a l  Error Erased  
H 32 Frames 1000 Frames 8 Frames 5 - ( 3 )  Channel BSC: p =.045 

T o t a l  E r r o r  Erased 
(4 )  Channel H Frames Frames Frames - 

T o t a l  Error 
( 5 )  Channel H Frames Frames Frames 

_I_ 

T o t a l  E r r o r  Erased  
( 6 )  Channel H Frames Frames Frames - 
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Code No. 6 Code Name Maximum Weight Adjoint 

Memory = 35 Rate = % Type Systematic 

Generator Sequences (Octal): 400000000000 

656 374423651 

Known Distance Properties: 
d = 13 FD 2 22 FREE 18 2 d 

Nature of Construction: Adjoint of code no. 5 

Simulation Results: - - Total Error Erased 
(1) Channel Gauss: Eb’No H 32 Frames 1000 Frames 0 Frames 7 - 

Total Error Erased 
(2) Channel BSC: p = .033 H 32 Frames 1000 Frames 0 Frames 0 

Total Error Erased 
H 32 Frames 1000 Frames 7 Frames 4 - (3) Channel BSC: p = .045 

Total Error Erased 
(4) Channel H Frames Frames Frames 

Total Error Erased 
(5) Channel H Frames Frames Frames - 

Total Error Erased 
(6) Channel H Frames Frames Frames 
ComDutation : Total Error Bits: 

- 
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Code No. 7 Code Name Balanced Code 

Memory = 35 Rate = % Type Svstematic 

Generator Sequences (Octal): 400000000000 

653125446515 

Known Distance Properties: 

dFD = 1 3  16 5 dFmE 

Nature of Construction: Algorithm A8 

Simulation Results: Total Error Erased ~~ 

Frames 5 (1) Channel Gauss: Eb/No = 2 * o H  - 32 Frames 1000 Frames 3 - 

Total Error Erased 
H 32 Frames 1000 Frames 0 Frames 0 
_. 

( 2 )  Channel BSC: p = .033 

Total Error Erased 
H 32 Frames 1000 Frames 12 Frames 2 - ( 3 )  Channel BSC: p = .045 

Total Error Erased 
( 4 )  Channel H Frames Frames Frames 

_I_ 

Total Error Erased 
(5) Channel H Frames Frames Frames - 
Comnutat ion : Total Error B i t x :  

Total Error Erased 
( 6 )  Channel H Frames Frames Frames 
ComDutation: Total Error Bits: 

- 
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Code tlo. 8 Code &me Balanced Adjoint  

Memory = 35 Rate = % Type Svs temat ic  

Generator Sequences (Oc ta l ) :  400000000000 

732453703632 

Known Distance P r o p e r t i e s :  

dFD = 1 3  

Nature of Construct ion:  Adjoint  of code no. 7 

Simulat ion Resu l t s :  - T o t a l  Error Erased ~ 

(1 )  Channel Gauss: Eb’No - 2 * o  H - 32 Frames 1000 Frames 0 Frames 3 

T o t a l  E r r o r  B i t s :  o 

T o t a l  E r r o r  Erased 
H 32 Frames 1000 Frames 0 Frames 0 - ( 2 )  Channel BSC: p = .033 

T o t a l  E r r o r  Erased 
( 3 )  Channel BSC: p = .045 H 32 Frames 1000 Frames 5 Frames 6 

T o t a l  E r r o r  Erased 
(4 )  Channel H Frames Frames Frames 

ComDutation : T o t a l  E r r o r  B i t s :  
- 

T o t a l  E r r o r  Erased 
( 5 )  Channel H Frames Frames Frames - 

T o t a l  E r r o r  Erased 
( 6 )  Channel H Frames Frames Frames 

_I 
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?(:de No. 9 Code N a m e  Balanced Bussnann 2 Code 

Ywnory = 35 Rate = % Type Svstematic  

Generator Sequences (Oc ta l ) :  400000000000 

732443151623 

Known Distance P r o p e r t i e s :  

dFD = 1 3  6 4 18 = dFREE= 20 

Nature of Construct ion:  The code ob ta ined  by  us ing  Algorithm A 8  t o  extend one 

of  Bussgang's op t imal  codes.  

Erased ~~ Simulat ion Resu l t s '  'Eb/No = 2.0 T o t a l  Error 
(1) Channel Gauss: H - 32 Frames 1000 Frames 1 Frames 3 

T o t a l  E r r o r  Erased 
( 2 )  Channel BSC: p = .033 H 32 Frames 1000 Frames 0 Frames 0 

T o t a l  E r r o r  Erased 
H 32 Frames 1000 Frames 4 Frames 3 - ( 3 )  Channel BSC: p = ,045 

T o t a l  E r r o r  Erased 
( 4 )  Channel H Frames Frames Frames 

T o t a l  E r r o r  Erased 
( 5 )  Channel H Frames Frames Frames 

ComDutation: T o t a l  E r r o r  B i t s :  
- 

T o t a l  E r r o r  Erased 
( 6 )  Channel H Frames Frames Frames - 
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Code No. 10 Code Name Balanced Bussaana 2 Adjoint 

Memory 35 Rate = Type Systematic  

Generator Sequences (Oc ta l ) :  400000000000 

653137244673 

Known Distance P rope r t i e s :  

dFD = 1 3  4 4 17 = dFmE = 23 

Nature of Construct ion:  Adjoint  of code no. 9 

Erased ~~ 
Simulation Resu l t s :  - - T o t a l  E r r o r  
(1) Channel Gauss: Eb'No 2 ' o H  - 32 Frames 1000 Frames 1 Frames 4 

T o t a l  E r r o r  Erased 
( 2 )  Channel BSC: p = ,033 H - 32 Frames 1000 Frames 0 Frames 0 

T o t a l  E r r o r  Erased 
H 32 Frames 1000 Frames 3 Frames 7 - ( 3 )  Channel BSC: p =.045 

T o t a l  E r r o r  Erased 
( 4 )  Channel H Frames Frames Frames - 

T o t a l  Error Erased 
( 5 )  Channel H Frames Frames Frames 

ComDutation: T o t a l  Error B i t s :  
- 

T o t a l  E r r o r  Erased 
( 6 )  Channel H Frames Frames Frames - 
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Code No. 11 Code N a m e  Non-svstematic Code 

Memory = 35 Rate = % Type- Non-svstematic 

Generator  Sequences (Oc ta l ) :  733533676737 

533533676737 

Known Distance P r o p e r t i e s :  

dFD = 11 

Nature of Construct ion:  Algorithm A9 

Simulat ion Resu l t s :  
E /N = 2 e O H  32 

( 1 )  Channel Gauss: b o - 

17 5 dFmE 

T o t a l  
Frames 1000 

Error Erased ~~ 

Frames 0 Frames 5 

T o t a l  Error B i t s :  

T o t a l  E r r o r  Erased 
H 32 Frames 1000 Frames 0 Frames 0 
_I 

( 2 )  Channel BSC: p = .033 

Computation : 
N I2921 

I I 

T o t a l  Error B i t s :  0 I"""f] 
T o t a l  Error Erased 

H 32 Frames 1000 Frames 0 Frames 8 - ( 3 )  Channel BSC: p = .045 

T o t a l  E r r o r  Erased 
(4) Channel BSC: p = .057 H 32 Frames 1000 Frames 0 Frames 749 

T o t a l  Error Erased 
( 5 )  Channel H Frames Frames Frames - 

T o t a l  E r r o r  Erased 
( 6 )  Channel H Frames Frames Frames 

Comoutat i on  : T o t a l  Error B i t s :  
P 



185 

Code No. 12 Code N a m e  NASA Code 

Memory = 35 Rate = 4 Type Systematic  

Generator Sequences (Octa l ) :  400000000000 

715473701317 

Known Distance P rope r t i e s :  

dFD = 14 

Nature of Construct ion:  The 

dFmE = 18 

a d j o i n t  of t h e  code Forney obta ined  by us ing  t h e  

Lin-Lyne a lgor i thm t o  extend one of Bussgang’s opt imal  codes. 

T o t a l  Error  Erased ~~ 

H 32 Frames 1000 Frames o Frames 4 
Simulation Resu l t s :  
( 1 )  Channel Gauss: Eb’No = 2.0 

T o t a l  Error Erased 
H 32 Frames 1000 Frames 0 Frames 0 ( 2 )  Channel BSC: p = .033 - 

T o t a l  Error 
H - 32 Frames 1000 Frames 2 Frames 4 ( 3 )  Channel BSC: P = eo45 

T o t a l  E r r o r  Erased 
H 32 Frames 1000 Frames 87 Frames 108 - ( 4 )  Channel BSC: p = .057 

T o t a l  E r r o r  Erased 
( 5 )  Channel H Frames Frames Frames 

P 

T o t a l  E r ro r  Erased 
( 6 )  Channel H Frames Frames Frames - 
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N 292 310 350 400 475 

10001000 992 880 565 
# Frames 
with #C 1. N 

Code No. 1 3  Code Name 1,in - J,yne CO& 

550 700 1250 250Q5000 10K 20K 50K 

370 185 44 1 4  7 2 0 0 

Memory = 35 Rate = % Type S v s m t  i c 

Generator Sequences (Octal): 400000000000 

653134307713 

Known Distance Properties: 
dFD = 1 4  19 5 dFEE f 22 

Nature of Construction: Forney's extension of the Lin-Lyne algorithm. 

ComDutation: Computation: 

# Frames # Frames 

Total Error-Bits : 2 1  
' 

400 

991 

400 475 550 700 1250 25005000 10K 20K 50K 

991 895 739 506 232 111 50 22 9 3 

Total Error Erased 
(4 )  Channel BSC: D = .os7 H 32 Frames 1000 Frames 80 Frames 118 

Total Error Erased 
( 5 )  Channel H Frames Frames Frames - 

Total Error Erased 
( 6 )  Channel H Frames Frames Frames - 
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APPENDIX B 

G e n e r a l i z i n g  f r o m  equations ( 1 5 1 ) ,  ( 1 6 0 1 ,  and ( 1 6 9 1 ,  

Y(’) (D) and y(21 (D) can always be w r i t t e n  i n  the following 

form: 

y ( l ’ ( D )  = Q1(D) (Dn - l j k  + R1(D) g ( D )  (Dn - l J k - l  (B1J 

f o r  s o m e  positive integer k. 

Clear ly  i f  k i s  a power of 2 ,  then 

and 
n k-1 (k-1)  n ( k - 2 h  + (k-3)  n 

(D - 1) = D  + D  + ... + 1. (B3) 

T h e r e f  ore 

W H [I y ( l E  (D)] 2 k dg 

wH [I Y(2’(D)] 2 k dh 

since 

degree [R1 (D)] < degree [ h ( D ) ]  

degree [R2(D) ]  < degree [ g(D)  ] e (B5) 

L e t  Q (D) = P (D) + P1(D) D 
n 2 n  + p2(D)  D + 

1 0 

P3(D) D3n + . . 
fo r  k = 3, 

w h e r e  degree [ Pi(D)]  < n for  a l l  i. T h e n  
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(B9) 
Theref ore 

since a sum of the  weights of a set of polynomials i s  always 

greater  than or equal t o  the weight of t he  sum of t he  poly- 

nomials. Hence 

Similarly 

(B12) 
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This same argument can be employed for all values of k. 

The number of coefficient equations similar to (B8) and 

(B9) is always equal to the weight of the polynomial 

(Dn-l)k-l,, Therefore if L = wH [ (Dn-l)k-l] , then 

for all values of k. 

(B4) when k is a power of 2, 

Mote that this agrees with equations 
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